Evolution of cell interactions with extracellular matrix during carcinogenesis (original) (raw)

Review Article Alterations in Cell-Extracellular Matrix Interactions during Progression of Cancers

Cancer progression is a multistep process during which normal cells exhibit molecular changes that culminate into the highly malignant and metastatic phenotype, observed in cancerous tissues. The initiation of cell transformation is generally associated with genetic alterations in normal cells that lead to the loss of intercellular-and/or extracellular-matrix-(ECM-) mediated cell adhesion. Transformed cells undergo rapid multiplication and generate more modifications in adhesion and motility-related molecules which allow them to escape from the original site and acquire invasive characteristics. Integrins, which are multifunctional adhesion receptors, and are present, on normal as well as transformed cells, assist the cells undergoing tumor progression in creating the appropriate environment for their survival, growth, and invasion. In this paper, we have briefly discussed the role of ECM proteins and integrins during cancer progression and described some unique conditions where adhesion-related changes could induce genetic mutations in anchorage-independent tumor model systems.

Alterations in Cell-Extracellular Matrix Interactions during Progression of Cancers

International Journal of Cell Biology, 2012

Cancer progression is a multistep process during which normal cells exhibit molecular changes that culminate into the highly malignant and metastatic phenotype, observed in cancerous tissues. The initiation of cell transformation is generally associated with genetic alterations in normal cells that lead to the loss of intercellular-and/or extracellular-matrix-(ECM-) mediated cell adhesion. Transformed cells undergo rapid multiplication and generate more modifications in adhesion and motilityrelated molecules which allow them to escape from the original site and acquire invasive characteristics. Integrins, which are multifunctional adhesion receptors, and are present, on normal as well as transformed cells, assist the cells undergoing tumor progression in creating the appropriate environment for their survival, growth, and invasion. In this paper, we have briefly discussed the role of ECM proteins and integrins during cancer progression and described some unique conditions where adhesion-related changes could induce genetic mutations in anchorage-independent tumor model systems.

The extracellular matrix in tumor progression and metastasis

Clinical & Experimental Metastasis, 2019

The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.

Cellular Localization, Invasion, and Turnover Are Differently Influenced by Healthy and Tumor-Derived Extracellular Matrix

The interplay between tumor cells and the microenvironment has been recognized as one of the hallmarks of cancer biology. To assess the role of extracellular matrix (ECM) in the modulation of tissue homeostasis and tumorigenesis, we developed a protocol for the purification of tissue-derived ECM using mucosae from healthy human colon, perilesional area, and colorectal carcinoma (CRC). Matched specimens were collected from the left colon of patients undergoing CRC resection surgery. ECMs were obtained from tissues that were decellularized with hypotonic solutions containing ionic and nonionic detergents, hypertonic solution, and endonuclease in the absence of denaturing agents. Mucosae-derived ECMs maintained distribution and localization of proteins and glycoproteins typical of the original tissues, and showed different three-dimensional (3D) structures among normal versus perilesional and tumor-derived stroma. The three types of ECM differentially regulated the localization and organization of seeded monocytes and cancer cells that were located and organized as in the original tissue. Specifically, healthy, perilesional, and CRC-derived ECMs sustained differentiation and polarization of cancer epithelial cells. In addition, healthy, but not perilesional and CRC-derived ECM constrained invasion of cancer cells. All three ECMs sustained turnover between cell proliferation and death up to 40 days of culture, although each ECM showed different ability in supporting cell proliferation, with tumor > perilesional > healthy-derived ECMs. Healthy-, perilesional-and CRC-derived ECM differently modulated cell homeostasis, spreading in the stroma and turnover between proliferation and death, and equally supported differentiation and polarization of cancer epithelial cells, thus highlighting the contribution of different ECMs modulating some features of tissue homeostasis and tumorigenesis. Moreover, these ECMs provide competent scaffolds useful to assess efficacy of antitumor drugs in a 3D setting that more closely recapitulates the native microenvironment. Further, ECM-based scaffolds may also be beneficial for future studies seeking prognostic and diagnostic stromal markers and targets for antineoplastic drugs.

Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis

Frontiers in oncology, 2018

Metastasis is a multistep process in which tumor extracellular matrix (ECM) and cancer cell cytoskeleton interactions are pivotal. ECM is connected, through integrins, to the cell's adhesome at cell-ECM adhesion sites and through them to the actin cytoskeleton and various downstream signaling pathways that enable the cell to respond to external stimuli in a coordinated manner. Cues from cell-adhesion proteins are fundamental for defining the invasive potential of cancer cells, and many of these proteins have been proposed as potent targets for inhibiting cancer cell invasion and thus, metastasis. In addition, ECM accumulation is quite frequent within the tumor microenvironment leading in many cases to an intense fibrotic response, known as desmoplasia, and tumor stiffening. Stiffening is not only required for the tumor to be able to displace the host tissue and grow in size but also contributes to cell-ECM interactions and can promote cancer cell invasion to surrounding tissues....

Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors

Seminars in Cancer Biology, 2010

Tumor progression in vitro has traditionally been studied in the context of two-dimensional (2D) environments. However, it is now well accepted that 2D substrates are unnaturally rigid compared to the physiological substrate known as extracellular matrix (ECM) that is in direct contact with both normal and tumorigenic cells in vivo. Hence, the patterns of interactions, as well as the strategies used by cells in order to penetrate the ECM, and migrate through a three-dimensional (3D) environment are notoriously different than those observed in 2D. Several substrates, such as collagen I, laminin, or complex mixtures of ECM components have been used as surrogates of native 3D ECM to more accurately study cancer cell behaviors. In addition, 3D matrices developed from normal or tumor-associated fibroblasts have been produced to recapitulate the mesenchymal 3D environment that assorted cells encounter in vivo. Some of these substrates are being used to evaluate physicomechanical effects on tumor cell behavior. Physiological 3D ECMs exhibit a wide range of rigidities amongst different tissues while the degree of stromal stiffness is known to change during tumorigenesis. In this review we describe some of the physico-mechanical characteristics of tumorassociated ECMs believed to play important roles in regulating epithelial tumorigenic behaviors.

Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells

International Journal of Cancer, 1980

Two metastatic cell lines, mouse B16-FI melanoma and human Hs939 melanoma, were examined for their abilities to adhere to confluent vascular endothelial cell monolayers and to the underlying endothelial extracellular matrix. Tumor cells attached slowly to the endothelial cell monolayers while they adhered rapidly to isolated extracellular matrix. When analyzed by polyacrylamide gel electrophoresis in sodium dodecylsulfate solutions, the extracellular matrix was shown to be primarily composed of a protein of identical migration and molecular weight to fibronectin. Tumor-cell adhesion to tibronectin-coated polyvinyl surfaces mimicked the rapid rate of attachment of tumor cells to extracellular matrix, and tumor cells adherent to either extracellular matrix or fibronectin-coated polyvinyl dishes adopted an unusual, highly spread and flattened morphology with numerous small projections. These results suggest that fibronectin associated with the endothelial basement membrane may be, in part, responsible for establishing an adhesive gradient that could be important in malignant cell extravasation.