Role of Specific Innate Immune Responses in Herpes Simplex Virus Infection of the Central Nervous System (original) (raw)

Toll-Like Receptor (TLR) 2 and TLR9 Expressed in Trigeminal Ganglia are Critical to Viral Control During Herpes Simplex Virus 1 Infection

American Journal of Pathology, 2010

Herpes simplex virus 1 (HSV-1) is a neurotropic DNA virus that is responsible for several clinical manifestations in humans, including encephalitis. HSV-1 triggers toll-like receptors (TLRs), which elicit cytokine production. Viral multiplication and cytokine expression in C57BL/6 wild-type (WT) mice infected with HSV-1 were evaluated. Virus was found in the trigeminal ganglia (TG), but not in the brains of animals without signs of encephalitis, between 2 and 6 days postinfection (d.p.i.). Cytokine expression in the TG peaked at 5 d.p.i. TLR9−/− and TLR2/9−/− mice were more susceptible to the virus, with 60% and 100% mortality, respectively, as opposed to 10% in the WT and TLR2−/− mice. Increased levels of both CXCL10/IP-10 and CCL2/MCP-1, as well as reduced levels of interferon-γ and interleukin 1-β transcripts, measured in both the TG and brains at 5 d.p.i., and the presence of virus in the brain were correlated with total mortality in TLR2/9−/− mice. Cytokine alterations in TLR2/9−/− mice coincided with histopathological changes in their brains, which did not occur in WT and TLR2−/− mice and occurred only slightly in TLR9−/− mouse brain. Increased cellularity, macrophages, CD8 T cells producing interferon-γ, and expression levels of TLR2 and TLR9 were detected in the TG of WT-infected mice. We hypothesize that HSV-1 infection is controlled by TLR-dependent immune responses in the TG, which prevent HSV-1 encephalitis.

Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis

Proceedings of the National Academy of Sciences, 2004

Human neonates infected with herpes simplex virus 1 (HSV-1) develop one of three distinct patterns of infection: ( i ) infection limited to the skin, eye or mouth; ( ii ) infection of the CNS; or ( iii ) disseminated infection. The disseminated form usually involves the liver, adrenal gland, and lung, and resembles the clinical picture of bacterial sepsis. This spectrum of symptoms in HSV-1-infected neonates suggests that inflammatory cytokines play a significant role in the pathogenesis of the disease. Recent studies suggest that the Toll-like receptors (TLRs) may play an important role in the induction of inflammatory cytokines in response to viruses. TLRs are mammalian homologues of Toll, a Drosophila protein that is essential for host defense against infection. Engagement of TLRs by bacterial, viral, or fungal components leads to the production and release of cytokines and other antimicrobial products. Here, we demonstrate that TLR2 mediates the inflammatory cytokine response to...

Innate immune response in astrocytes infected with herpes simplex virus 1

Archives of Virology, 2019

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, infects epithelial surfaces and establishes latency in the central nervous system, where astrocytes are a major immune cell type. Here, we report changes that occur in the expression of pathogen recognition receptors, such as Toll-like receptors, DNA and RNA sensors, interferons, and interferon-stimulated genes, when astrocytes are infected with HSV-1 strain F. We observed upregulation of Toll-like receptors 2, 6 and 9, MDA5, and DAI along with an increase in the expression of type I interferons and interferon-stimulated genes such as IFIT1, IFIT3 and RNase L. These genes encode proteins that mediate the antiviral immune response.

Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes

Medical Microbiology and Immunology, 2012

Herpes simplex virus type 1 (HSV-1) is the most common pathogenic cause of sporadic acute encephalitis and it produces latent persistent infection lifelong in infected individuals. Brain inflammation is associated with activation of glial cells, which can detect pathogen-associated molecular patterns (PAMPs) through a variety of pattern-recognition receptors (PRR), including Toll-like receptors (TLRs). In this study, we evaluated the expression and activation of TLR2, TLR3, and TLR4 in HSV-1-infected astrocyte and neuronal primary cultures. Our results showed a clear induction in TLR2 and TLR4 expression in astrocytes as early as 1 h after HSV-1 infection, whereas no significant change was observed in neurons. In addition, infected astrocytes showed increased levels of interferon regulatory factors IRF3 and IRF7, interferon b (INFb), interleukin 6 (IL6), and serum amyloid A (SAA3) transcripts, as well as phospho-IRF3 protein.

TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

The Journal of clinical investigation, 2012

Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation events. Immunological control of HSV involves activation of innate immune pattern-recognition receptors such as TLR3, which detects double-stranded RNA and induces type I IFN expression. Humans with defects in the TLR3/IFN pathway have an elevated susceptibility to HSV infections of the CNS. However, it is not known what cell type mediates the role of TLR3 in the immunological control of HSV, and it is not known whether TLR3 sensing occurs prior to or after CNS entry. Here, we show that in mice TLR3 provides early control of HSV-2 infection immediately after entry into the CNS by mediating type I IFN responses in astrocytes. Tlr3-/- mice were hypersusceptible to HSV-2 infection in the CNS af...

Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus

Journal of immunology (Baltimore, Md. : 1950), 2005

Recent studies indicate that TLRs are critical in generating innate immune responses during infection with HSV-1. In this study, we investigated the role of TLR2 signaling in regulating the production of neuroimmune mediators by examining cytokine and chemokine expression using primary microglial cells obtained from TLR2-/- as well as wild-type mice. Data presented here demonstrate that TLR2 signaling is required for the production of proinflammatory cytokines and chemokines: TNF-alpha, IL-1beta, IL-6, IL-12, CCL7, CCL8, CCL9, CXCL1, CXCL2, CXCL4, and CXCL5. CXCL9 and CXCL10 were also induced by HSV, but their production was not dependent upon TLR2 signaling. Because TLR2-/- mice display significantly reduced mortality and diminished neuroinflammation in response to brain infection with HSV, the TLR2-dependent cytokines identified here might function as key players influencing viral neuropathogenesis.

Robust expression of TNF a , IL-1 ß , RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus

Journal of Neurovirology, 2001

, IL-1 , IL-6, IL-18, IL-10, and IFN-) and chemokine (IL-8, IP-10, MCP-1, MIP-1 , and RANTES) production during herpes simplex virus (HSV) 1 infection of human brain cells was examined. Primary astrocytes as well as neurons were found to support HSV replication, but neither of these fully permissive cell types produced cytokines or chemokines in response to HSV. In contrast, microglia did not support extensive viral replication; however, ICP4 was detected by immunochemical staining, demonstrating these cells were infected. Late viral protein (nucleocapsid antigen) was detected in 10% of infected microglial cells. Microglia responded to nonpermissive viral infection by producing considerable amounts of TNF-, IL-1 , IP-10, and RANTES, together with smaller amounts of IL-6, IL-8, and MIP-1 as detected by RPA and ELISA. Surprisingly, no interferons ( , or ) were detected in response to viral infection. Pretreatment of fully permissive astrocytes with TNFprior to infection with HSV was found to dramatically inhibit replication, resulting in a 14-fold reduction of viral titer. In contrast, pretreatment of astrocytes with IL-1 had little effect on viral replication. When added to neuronal cultures, exogenous TNFor IL-1 did not suppress subsequent HSV replication. Exogenously added IP-10 inhibited HSV replication in neurons (with a 32-fold reduction in viral titer), however, similar IP-10 treatment did not affect viral replication in astrocytes. These results suggest that IP-10 possesses direct antiviral activity in neurons and support a role for microglia in both antiviral defense of the brain as well as ampli cation of immune responses during neuroin ammation. Journal of NeuroVirology (2001) 7, 208-219.

Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia

Journal of neuroinflammation, 2007

Information regarding the response of brain cells to infection with herpes simplex virus (HSV)-1 is needed for a complete understanding of viral neuropathogenesis. We have recently demonstrated that microglial cells respond to HSV infection by producing a number of proinflammatory cytokines and chemokines through a mechanism involving Toll-like receptor 2 (TLR2). Following this cytokine burst, microglial cells rapidly undergo cell death by apoptosis. We hypothesized that TLR2 signaling might mediate the cell death process as well. To test this hypothesis, we investigated HSV-induced cell death of microglia obtained from both wild-type and TLR2-/- mice. Cell death was studied by oligonucleosomal ELISA and TUNEL staining, and the mechanisms of apoptosis were further analyzed using murine apoptosis-specific microarrays. The data obtained from microarray analysis were then validated using quantitative real-time PCR assays. HSV infection induced apoptotic cell death in microglial cells f...

The Immune Response to Herpes Simplex Virus Type 1 Infection in Susceptible Mice Is a Major Cause of Central Nervous System Pathology Resulting in Fatal Encephalitis

This study was undertaken to investigate possible immune mechanisms in fatal herpes simplex virus type 1 (HSV-1) encephalitis (HSE) after HSV-1 corneal inoculation. Susceptible 129S6 (129) but not resistant C57BL/6 (B6) mice developed intense focal inflammatory brain stem lesions of primarily F4/80 macrophages and Gr-1 neutrophils detectable by magnetic resonance imaging as early as day 6 postinfection (p.i.). Depletion of macrophages and neutrophils significantly enhanced the survival of infected 129 mice. Immunodeficient B6 (IL-7R/ Kitw41/w41) mice lacking adaptive cells (B6-E mice) and transplanted with 129 bone marrow showed significantly accelerated fatal HSE compared to B6-E mice transplanted with B6 marrow or control nontransplanted B6-E mice. In contrast, there was no difference in ocular viral shedding in B6-E mice transplanted with 129 or B6 bone marrow. Acyclovir treatment of 129 mice beginning on day 4 p.i. (24 h after HSV-1 first reaches the brain stem) reduced nervous system viral titers to undetectable levels but did not alter brain stem inflammation or mortality. We conclude that fatal HSE in 129 mice results from widespread damage in the brain stem caused by destructive inflammatory responses initiated early in infection by massive infiltration of innate cells.

Herpes Simplex Virus 1 Infection of Neuronal and Non-Neuronal Cells Elicits Specific Innate Immune Responses and Immune Evasion Mechanisms

Frontiers in Immunology, 2021

Alphaherpesviruses (a-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human a-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All a-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All a-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, a-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a lifelong infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and nonneuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.