Challenges in Stratifying the Molecular Variability of Patient-Derived Colon Tumor Xenografts (original) (raw)

Establishment of genetically diverse patient-derived xenografts of colorectal cancer

American journal of cancer research, 2014

Preclinical compounds tested in animal models often show limited efficacy when transitioned into human clinical trials. As a result, many patients are stratified into treatment regimens that have little impact on their disease. In order to create preclinical models that can more accurately predict tumor responses, we established patient-derived xenograft (PDX) models of colorectal cancer (CRC). Surgically resected tumor specimens from colorectal cancer patients were implanted subcutaneously into athymic nude mice. Following successful establishment, fourteen models underwent further evaluation to determine whether these models exhibit heterogeneity, both at the cellular and genetic level. Histological review revealed properties not found in CRC cell lines, most notably in overall architecture (predominantly columnar epithelium with evidence of gland formation) and the presence of mucin-producing cells. Custom CRC gene panels identified somatic driver mutations in each model, and the...

Patient-Derived Xenografts and Matched Cell Lines Identify Pharmacogenomic Vulnerabilities in Colorectal Cancer

Clinical Cancer Research, 2019

Purpose: Patient-derived xenograft (PDX) models accurately recapitulate the tumor of origin in terms of histopathology, genomic landscape, and therapeutic response, but some limitations due to costs associated with their maintenance and restricted amenability for large-scale screenings still exist. To overcome these issues, we established a platform of 2D cell lines (xeno-cell lines, XL), derived from PDXs of colorectal cancer with matched patient germline gDNA available. Experimental Design: Whole-exome and transcriptome sequencing analyses were performed. Biomarkers of response and resistance to anti-HER therapy were annotated. Dependency on the WRN helicase gene was assessed in MSS, MSI-H, and MSI-like XLs using a reverse genetics functional approach. Results: XLs recapitulated the entire spectrum of colorectal cancer transcriptional subtypes. Exome and RNA-seq analyses delineated several molecular biomarkers of response and resistance to EGFR and HER2 blockade. Genotype-driven r...

Modeling of Patient Derived Xenografts in Colorectal Cancer

Molecular cancer therapeutics, 2017

Developing realistic preclinical models using clinical samples that mirror complex tumor biology and behavior are vital to advancing cancer research. While cell-line cultures have been helpful in generating preclinical data, the genetic divergence between these and corresponding primary tumors has limited clinical translation. Conversely, patient derived xenografts (PDXs) in colorectal cancer (CRC) are highly representative of the genetic and phenotypic heterogeneity in the original tumor. Coupled with high-throughput analyses and bioinformatics, these PDXs represent robust preclinical tools for biomarkers, therapeutic target and drug discovery. <p>Successful PDX engraftment is hypothesized to be related to a series of anecdotal variables namely, tissue source, cancer stage, tumor grade, acquisition strategy, time to implantation, exposure to prior systemic therapy, and genomic heterogeneity of tumors. Although these factors at large can influence practices and patterns relate...

Capturing colorectal cancer inter-tumor heterogeneity in patient-derived xenograft (PDX) models

International journal of cancer, 2018

Patient-derived xenograft (PDX) models have become an important asset in translational cancer research. However, to provide a robust preclinical platform, PDXs need to accommodate the tumor heterogeneity that is observed in patients. Colorectal cancer (CRC) can be stratified into four consensus molecular subtypes (CMS) with distinct biological and clinical features. Surprisingly, using a set of CRC patients, we revealed the partial representation of tumor heterogeneity in PDX models. The epithelial subtypes, the largest subgroups of CRC subtype, were very ineffective in establishing PDXs, indicating the need for further optimization to develop an effective personalized therapeutic approach to CRC. Moreover, we showed that tumor cell proliferation was associated with successful PDX establishment and able to distinguish patient with poor clinical outcomes within CMS2 group.

XENTURION, a multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients for population-level translational oncology

ABSTRACTThe breadth and depth at which cancer models are interrogated contribute to successful translation of drug discovery efforts to the clinic. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, the setting where experimental therapies are typically tested. XENTURION is a unique open-science resource that combines a platform of 129 PDX models and a sister platform of 129 matched PDX-derived tumoroids (PDXTs) from patients with metastatic CRC, with accompanying multidimensional molecular and therapeutic characterization. A PDXT-based population trial with the anti-EGFR antibody cetuximab revealed variable sensitivities that were consistent with clinical response biomarkers, mirrored tumor growth changes in matched PDXs, and recapitulated the outcome of EGFR genetic deletion. Adaptive signals upregulated by EGFR blockade were computationally and function...

Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models

Cell death and differentiation, 2018

Colorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called consensus molecular subtypes (CMS1-4), each of which has a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribu...

Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies

Clinical cancer research : an official journal of the American Association for Cancer Research, 2018

Response to standard oncologic treatment is limited in colorectal cancer. The gene expression-based consensus molecular subtypes (CMS) provide a new paradigm for stratified treatment and drug repurposing; however, drug discovery is currently limited by the lack of translation of CMS to preclinical models.We analyzed CMS in primary colorectal cancers, cell lines, and patient-derived xenografts (PDX). For classification of preclinical models, we developed an optimized classifier enriched for cancer cell-intrinsic gene expression signals, and performed high-throughputdrug screening (= 459 drugs) to analyze subtype-specific drug sensitivities.The distinct molecular and clinicopathologic characteristics of each CMS group were validated in a single-hospital series of 409 primary colorectal cancers. The new, cancer cell-adapted classifier was found to perform well in primary tumors, and applied to a panel of 148 cell lines and 32 PDXs, these colorectal cancer models were shown to recapitul...

Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine

Neoplasia, 2021

Patient-derived xenograft (PDX) tumor models represent a valuable platform for identifying new biomarkers and novel targets, to evaluate therapy response and resistance mechanisms. This study aimed at establishment, characterization and therapy testing of colorectal carcinoma-derived PDX. We generated 49 PDX and validated identity between patient tumor and corresponding PDX. Sensitivity of PDX toward conventional and targeted drugs revealed that 92% of PDX responded toward irinotecan, 45% toward 5-FU, 65% toward bevacizumab, and 61% toward cetuximab. Expression of epidermal growth factor receptor (EGFR) ligands correlated to the sensitivity toward cetuximab. Proto-oncogene B-RAF, EGFR, Kirsten rat sarcoma virus oncogene homolog gene copy number correlated positively with cetuximab and erlotinib sensitivity. The mutational analyses revealed an individual mutational profile of PDX and mainly identical profiles of PDX from primary tumor vs corresponding metastasis. Mutation in PIK3CA was a determinant of accelerated tumor doubling time. PDX with wildtype Kirsten rat sarcoma virus oncogene homolog, proto-oncogene B-RAF, and phosphatidylinositol-4,5-bisphosphate 3-kinaseM catalytic subunit alfa showed higher sensitivity toward cetuximab and erlotinib. To study the molecular mechanism of cetuximab resistance, cetuximab resistant PDX models were generated, and changes in HER2, HER3, betacellulin, transforming growth factor alfa were observed. Global proteome and phosphoproteome profiling showed a reduction in canonical EGFR-mediated signaling via PTPN11 (SHP2) and AKT1S1 (PRAS40) and an increase in anti-apoptotic signaling as a consequence of acquired cetuximab resistance. This demonstrates that PDX models provide a multitude of possibilities to identify and validate biomarkers, signaling pathways and resistance mechanisms for clinically relevant improvement in cancer therapy.

Molecular characterization of colorectal cancer patients and concomitant patient-derived tumor cell establishment

Oncotarget, 2016

We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Onco...