Construction of simplified design p–y curves for liquefied soils (original) (raw)

In practice, laterally loaded piles are most often analysed using a ‘beam-on-non-linear-Winkler-foundation’ approach, whereby the soil–structure interaction is modelled by means of p–y curves. Although well-calibrated p–y curves exist for non-liquefied soils (e.g. soft clay and sand), the profession still lacks reliable p–y curves for liquefied soils. In fact, the latter should be consistent with the observed strain-stiffening behaviour exhibited by liquefied samples in both element and physical model tests. It is recognised that this behaviour is induced by the tendency of the liquefied soil to dilate upon undrained shearing, which ultimately results in a gradual decrease in excess pore pressure, and consequent increase in stiffness and strength. The aim of this paper is twofold. First, it proposes an easy-to-use empirical model for constructing stress–strain relationships for liquefied soils. This only requires three soil parameters which can conveniently be determined by means of...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.