Characterization of Respiratory Syncytial Virus M- and M2-Specific CD4 T Cells in a Murine Model (original) (raw)

Identification of Immunodominant Epitopes Derived from the Respiratory Syncytial Virus Fusion Protein That Are Recognized by Human CD4 T Cells

Journal of Virology, 2003

Memory CD4 T-cell responses against respiratory syncytial virus (RSV) were evaluated in peripheral blood mononuclear cells of healthy blood donors with gamma interferon enzyme-linked immunospot (Elispot) assays. RSV-specific responses were detected in every donor at levels varying between 0.05 and 0.3% of CD4 T cells. For all donors tested, a considerable component of the CD4 T-cell response was directed against the fusion (F) protein of RSV. We characterized a set of 31 immunodominant antigenic peptides targeted by CD4 T cells in the context of the most prevalent HLA class II molecules within the Caucasian population. Most antigenic peptides were HLA-DR restricted, whereas two dominant DQ peptides were also identified. The antigenic peptides identified were located across the entire sequence of the F protein. Several peptides were presented by more than one major histocompatibility complex class II molecule. Furthermore, most donors recognized several F peptides. Detailed knowledge about immunodominant antigenic peptides will facilitate the ability to monitor CD4 T-cell responses in patients and the measurement of correlates of protection in vaccinated subjects.

Identification of a Common HLA-DP4-Restricted T-Cell Epitope in the Conserved Region of the Respiratory Syncytial Virus G Protein

Journal of Virology, 2004

The cellular immune response to respiratory syncytial virus (RSV) is important in both protection and immunopathogenesis. In contrast to HLA class I, HLA class II-restricted RSV-specific T-cell epitopes have not been identified. Here, we describe the generation and characterization of two human RSV-specific CD4 ؉ -T-cell clones (TCCs) associated with type 0-like cytokine profiles. TCC 1 was specific for the matrix protein and restricted over HLA-DPB1*1601, while TCC 2 was specific for the attachment protein G and restricted over either HLA-DPB1*0401 or -0402. Interestingly, the latter epitope is conserved in both RSV type A and B viruses. Given the high allele frequencies of HLA-DPB1*0401 and -0402 worldwide, this epitope could be widely recognized and boosted by recurrent RSV infections. Indeed, peptide stimulation of peripheral blood mononuclear cells from healthy adults resulted in the detection of specific responses in 8 of 13 donors. Additional G-specific TCCs were generated from three of these cultures, which recognized the identical (n ‫؍‬ 2) or almost identical (n ‫؍‬ 1) HLA-DP4-restricted epitope as TCC 2. No significant differences were found between the capacities of cell lines obtained from infants with severe (n ‫؍‬ 41) or mild (n ‫؍‬ 46) RSV lower respiratory tract infections to function as antigen-presenting cells to the G-specific TCCs, suggesting that the severity of RSV disease is not linked to the allelic frequency of HLA-DP4. In conclusion, we have identified an RSV G-specific human T helper cell epitope restricted by the widely expressed HLA class II alleles DPB1*0401 and -0402. Its putative role in protection and/or immunopathogenesis remains to be determined.

Respiratory Syncytial Virus Recombinant F Protein (Residues 255–278) Induces a Helper T Cell Type 1 Immune Response in Mice

Viral Immunology, 2007

We have developed and evaluated an immunodominant respiratory syncytial virus (RSV) F antigen in a mouse model. The antigenic region corresponding to amino acids 255-278 of the RSV F protein was cloned into a vector containing the ctxA 2 B gene of cholera toxin (CT). The recombinant protein was expressed in Escherichia coli and analyzed on sodium dodecyl sulfate-polyacrylamide gels. The purified protein was evaluated by immunoblot and ganglioside GM 1 enzyme-linked immunosorbent assay to confirm the expression of the RSV F protein and to correct association of the recombinant protein to form a holotoxin-like chimera, respectively. We hypothesized that genetic fusion of modified CT-based adjuvant with RSV F immunodominant epitopes (rRF-255) would induce protective humoral and cellular immune responses in mice. Intranasal immunization of mice with rRF-255 overall induced higher concentrations of anti-RSV F-specific antibodies in both serum and saliva as compared with mice immunized intranasally with RSV or phosphate-buffered saline (PBS). Antibody isotype analysis (IgA, IgG1, IgG2a, and IgG2b) was also performed. The predominant IgG2a antibody isotype response in combination with cytokine analysis of helper T cell type 1 (interferon-␥, interleukin [IL]-2, IL-12 p70, and tumor necrosis factor-␣) and helper T cell type 2 (IL-4 and IL-10) responses revealed that rRF-255 antigen induces a prominent helper T cell type 1 immune response in mice. The rRF-255 antigen also induced serum neutralizing antibodies in immunized mice. Analysis of RSV load in lungs showed that rRF-255 immunization provided significant protection compared with PBS control animals.

CD4 1 T-Cell-Mediated Antiviral Protection of the Upper Respiratory Tract in BALB/c Mice following Parenteral Immunization with a Recombinant Respiratory Syncytial Virus G Protein Fragment

J Virol, 2000

We analyzed the protective mechanisms induced against respiratory syncytial virus subgroup A (RSV-A) infection in the lower and upper respiratory tracts (LRT and URT) of BALB/c mice after intraperitoneal immunization with a recombinant fusion protein incorporating residues 130 to 230 of RSV-A G protein (BBG2Na). Mother-to-offspring antibody (Ab) transfer and adoptive transfer of BBG2Na-primed B cells into SCID mice demonstrated that Abs are important for LRT protection but have no effect on URT infection. In contrast, RSV-A clearance in the URT was achieved in a dose-dependent fashion after adoptive transfer of BBG2Na-primed T cells, while it was abolished in BBG2Na-immunized mice upon in vivo depletion of CD4 ؉ , but not CD8 ؉ , T cells. Furthermore, the conserved RSV-A G protein cysteines and residues 193 and 194, overlapping the recently identified T helper cell epitope on the G protein (P. W. Tebbey et al., J. Exp. Med. 188:1967-1972, 1998), were found to be essential for URT but not LRT protection. Taken together, these results demonstrate for the first time that CD4 ؉ T cells induced upon parenteral immunization with an RSV G protein fragment play a critical role in URT protection of normal mice against RSV infection.

Cytotoxic T cells specific for a single peptide on the M2 protein of respiratory syncytial virus are the sole mediators of resistance induced by immunization with M2 encoded by a recombinant vaccinia virus

Journal of virology, 1995

We have studied the immunobiology of respiratory syncytial virus (RSV), a major cause of respiratory tract morbidity in children. As part of these studies, it was previously found that immunization of BALB/c (H-2d) mice with a recombinant vaccinia virus (rVV) which encoded the M2 protein of RSV provided complete protection against infection with RSV. This protection was transient and associated with M2-specific CD8+ T-cell (TCD8+) responses. In this study, we used two approaches to demonstrate that expression of an H-2Kd-restricted nonameric peptide (Ser Tyr Ile Gly Ser Ile Asn Asn Ile) corresponding to M2 residues 82 to 90 is necessary and sufficient to induce protective TCD8+ responses. First, infection of mice with an rVV which encoded the peptide M2Met82-90 induced levels of primary pulmonary TCD8+ and resistance to RSV challenge equivalent to that induced by infection with an rVV which expressed the complete M2 protein. Second, elimination of peptide binding to Kd by the replac...

Synergistic effect of immunization with a peptide cocktail inducing antibody, helper and cytotoxic T-cell responses on protection against respiratory syncytial virus

Journal of General Virology

Respiratory syncytial virus (RSV)-specific cytotoxic T lymphocytes (CTL) or neutralizing antibodies can protect against RSV infection when induced separately by immunization with synthetic peptides. In the work described here, RSV-specific neutralizing antibodies and CTLs were induced after immunization with a cocktail of peptides consisting of a B-cell mimotope (S1S-MAP), a T-helper epitope (SH:45-60) and a CTL epitope linked to a fusion (F) peptide (F/M2:81-95) that were comparable to those induced by the peptides alone. Following challenge, a 190-fold reduction in RSV titre was observed in the lungs of peptide cocktail-immunized mice. The combination of RSV-specific humoral and cellular immunity induced by the peptide cocktail was thus more effective at clearing RSV than peptide-induced humoral or cellular immunity alone.

Identification of an H-2Db-restricted CD8+ cytotoxic T lymphocyte epitope in the matrix protein of respiratory syncytial virus

Virology, 2005

Cytotoxic T lymphocytes (CTL) play a significant role in the clearance of respiratory syncytial virus (RSV) infection in humans and mice. Identification of class I MHC-restricted CTL epitopes is critical in elucidating mechanisms of CTL responses against viral infections. However, only four H-2 d -restricted epitopes have been reported in mice. Because of the diversity of transgenic and knockout mice available to study immune responses, new epitopes in additional strains of mice must be identified. We therefore attempted to discover novel CTL epitopes in C57Bl/6 mice. Our efforts revealed a new H-2D b -restricted CTL epitope from the RSV M protein, corresponding to aa [187][188][189][190][191][192][193][194][195]. Also, M187 -195-specific CTLs were activated with kinetics similar to the immunodominant BALB/c epitope, M2 82 -90. This is the first RSV-specific CTL epitope described in a strain of mice other than BALB/c. Furthermore, identification of this H-2 b -restricted CTL epitope provides access to genetically modified H-2 b mice for more detailed studies of CTL mechanisms in RSV infection. Published by Elsevier Inc.

on Human Respiratory Tract Epithelial Cells and Regulation by Respiratory Syncytial Virus and Type 1 and 2 Cytokines

2016

Background. Respiratory syncytial virus (RSV) is associated with wheezing illness, and infections can occur repeatedly throughout life. We hypothesized that RSV infection of respiratory tract epithelial cells up-regulates B7 molecules that regulate memory immune responses and that type 1 and 2 cytokines differentially modulate this induction. Methods. We used flow-cytometric analysis to investigate programmed death–1 ligand (PD-L) 1, PD-L2, B7-H3, and inducible costimulatory ligand (ICOS-L) expression on tracheal (NCI-H292), bronchial (BEAS-2B), and alveolar (A549) epithelial cells; regulation of this expression by RSV, interferon (IFN)–g, and interleukin (IL)–4; and the effects of IFN-g and IL-4 on RSV-induced expression of these molecules. Results. B7-H3 was strongly expressed, PD-L1 and ICOS-L were moderately expressed, and PD-L2 was weakly expressed on unstimulated tracheal, bronchial, and alveolar epithelial cells. RSV infection up-regulated PD-L1, PD-L2, and B7-H3 expression o...