CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment (original) (raw)

Improvements in a CFD code for analysis of hydrogen behaviour within containments

Nuclear Engineering and Design, 2007

The use of CFD codes for the analysis of the hydrogen behaviour within NPP containments during severe accidents has been increasing during last years. In this paper, the adaptation of a commercial multi-purpose code to this kind of problem is explained, i.e. by the implementation of models for several transport and physical phenomena like: steam condensation onto walls in presence of non-condensable gases, heat conduction, fog and rain formation, material properties and criteria for assessing the hydrogen combustion regime expected. The code has been validated against several experiments in order to verify its capacity to simulate the following phenomena: plumes, mixing, stratification and condensation. Moreover, two tests in an integral large enough experimental facility have been simulated, showing that the well-mixed and stratified conditions of the test were reproduced by the code. Finally, an example of a plant application demonstrates the ability of the code in this kind of problems.

CFD Application to Hydrogen Risk Analysis and PAR Qualification

Science and Technology of Nuclear Installations, 2009

A three dimensional computation fluid dynamics (CFD) code, GASFLOW, is applied to analyze the hydrogen risk for Qinshan-II nuclear power plant (NPP). In this paper, the effect of spray modes on hydrogen risk in the containment during a large break loss of coolant accident (LBLOCA) is analyzed by selecting three different spray strategies, that is, without spray, with direct spray and with both direct and recirculation spray. A strong effect of spray modes on hydrogen distribution is observed. However, the efficiency of the passive auto-catalytic recombiners (PAR) is not substantially affected by spray modes. The hydrogen risk is significantly increased by the direct spray, while the recirculation spray has minor effect on it. In order to simulate more precisely the processes involved in the PAR operation, a new PAR model is developed using CFD approach. The validation shows that the results obtained by the model agree well with the experimental results.

CFD simulations of hydrogen combustion in a simplified EPR containment with CFX and REACFLOW

Nuclear Engineering and Design, 2007

The prediction of over-pressures and temperatures that are generated by hydrogen explosions in case of a severe nuclear accident is a crucial stage of the safety analysis of the containment. The investigation presented in this paper is a continuation of the numerical studies of validation and benchmarking that were carried out in the European co-sponsored project HYCOM. In the present work, numerical simulations of hydrogen deflagrations within a simplified, real-scale European Pressure Reactor (EPR) containment have been performed with two CFD codes, CFX4 and REACFLOW. The analysis has been focused not only on overpressure peaks and pressure oscillations, but also on pressure differences between the two sides of the same wall of internal compartments. Different geometrical configurations have been considered in term of presence of vents between internal compartments and in term of vents number, size and position. Single and multiple ignition points have also been taken into account. The paper describes the main results of the investigation and it is a demonstration of how CFD modelling can provide significant indications for real-scale safety applications within the limits of uncertainty of the accident scenarios.

CFD-based risk assessment for hydrogen applications

Process Safety Progress, 2008

Computational fluid dynamics calculations for gas explosion safety have been widely used for doing risk assessments within the oil and gas industry for more than a decade. On the basis of predicted consequences of a range of potential accident scenarios a risk level is predicted. The development of applications using hydrogen as a clean energy carrier has accelerated in recent years, and hydrogen may be used widely in the future. Because of the very high reactivity of hydrogen, safe handling is critical. For most applications it is not realistic to perform an extensive risk assessment similar to what is done for large petrochemical installations. On the other hand, simplified methods, like venting guidelines, may have a questionable validity for hydrogen. The use of simple methods, if these actually are conservative, will in general predict too high consequences for the majority of scenarios, as these are not able to represent actual geometry and physics of the explosion. In this article a three-step approach is proposed. The initial approach will be to carry out a ''worstcase'' calculation evaluating the consequences if a full stoichiometric gas cloud is ignited. Mitigation measures can also be considered. As a second step, if potential consequences of the initial approach are not acceptable, the assumptions are refined and more calculations are performed to make the evaluations more realistic and reduce unnecessary conservatism of the chosen worst-case scenarios. Typically a number of dispersion calculations will be performed to generate likely gas clouds, which are subsequently ignited. If estimated consequences are still not acceptable, a more comprehensive study, including ventilation, dispersion, and explosion, is performed to evaluate the probability for unacceptable events.

Evaluation of CFD Capability for Simulation of Energetic Flow in Light Water Reactor Containment

2015

HANNA, BOTROS NASEIF. Evaluation of CFD Capability for Simulation of Energetic Flow in Light Water Reactor Containment. (Under the direction of Dr. Igor A. Bolotnov and Dr. Nam T. Dinh.) This study is concerned with analysis of Direct Containment Heating (DCH), which is a known threat to the integrity of containment in Light Water Reactor plants during beyond design basis accident. DCH occurs in scenarios with high-pressure melt ejection (HPME) from the reactor vessel lower head to the containment. Molten corium release is followed by highly energetic steam flow, which causes melt dispersal and rapid heat up of the containment atmosphere. The present work investigates the capabilities of a computational fluid dynamics (CFD) approach for simulating high pressure steam blowdown. Evaluation Model Development and Assessment Process (EMDAP) is used to guide the investigation. Validation studies are conducted for selected flow patterns identified as important for the blowdown modeling. A ...

GASFLOW-MPI: A new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations Part II: First analysis of the hydrogen explosion in Fukushima Daiichi Unit 1

GASFLOW-MPI: A new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations Part II: First analysis of the hydrogen explosion in Fukushima Daiichi Unit 1, International Journal of Hydrogen Energy, Available online 18 March 2017, 2017

The core-melt in Fukushima-Daiichi Unit 1 represents a new class of severe accidents in which combustible gas from core degradation leaked from the containment into the surrounding air-filled reactor building, formed there a highly reactive gas mixture, and exploded 25 h after begin of the station blackout. Since TMI-2 hydrogen safety research and management has focussed on processes and countermeasures inside the containment but the reactor building remained unprotected against hydrogen threats. The code GASFLOW-MPI is currently under development to simulate hydrogen behaviors, including distribution and combustion, for scenarios with containment leakage. This paper describes a first analysis of the hydrogen explosion in Unit 1. It investigates gas dispersion in the reactor building, assuming a leak at the drywell head flange, shows the evolution of a stratified, inhomogeneous H 2 eO 2 eN 2 esteam mixture in the refueling bay, simulates the combustion of the reactive gas mixture, and predicts pressure loads to walls and internal structures of the reactor building. The blast wave propagated essentially sideways, which explains why all side walls were blown out and the ceiling just collapsed onto the floor of the refueling bay. The blast wave propagation into the free environment was also simulated. The over-pressure amplitudes are sufficiently high to cause damage to adjacent buildings and to injure people. The hitherto existing presumption that the blow-out panel of Unit 2 was removed by the Unit 1 explosion can be confirmed which likely prevented a hydrogen explosion in the Unit 2. GASFLOW-MPI provides validated models for the integral simulations of leakage related core-melt scenarios. Furthermore, the code contains extensively tested submodels for catalytic recombiners, igniters and burst foils, which allow design of new hydrogen risk mitigation systems for currently unprotected spaces in reactor buildings. ScienceDirect j o urn al h om epa ge: www.elsev ier.com/locate/he i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y x x x (2 0 1 7) 1 e1 3 Please cite this article in press as: Xiao J, et al., GASFLOW-MPI: A new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations Part II: First analysis of the hydrogen explosion in Fukushima Daiichi Unit 1, International Journal of Hydrogen Energy (2017), http://dx.

The TONUS CFD code for hydrogen risk analysis: Physical models, numerical schemes and validation matrix

Nuclear Engineering and Design, 2008

The French Atomic Energy Commission (CEA) and the Radiation protection and Nuclear Safety Institute (IRSN) are developing a hydrogen risk analysis code (safety code) which incorporates both lumped parameter (LP) and computational fluid dynamics (CFD) formulations. In this paper we present the governing equations, numerical strategy and schemes used for the CFD approach. Typical numerical studies will be presented for hydrogen distribution and combustion applications in realistic large geometries.

Evaluation of computational fluid dynamic methods for reactor safety analysis (ECORA)

Nuclear Engineering and Design, 2005

This report addresses the activities in the field of CFD (Computational Fluid Dynamics) to simulate processes, which can occur in a nuclear containment. The report starts with a summary of the phenomena to be relevant under abnormal and accidental conditions. A classification of the known issues is intended to help in the evaluation of the current level of modelling such issues and may give some indication for a continuation of work.

Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System

2020

Korea Atomic Energy Research Institute (KAERI) established a multi-dimensional hydrogen analysis system to evaluate a hydrogen release, distribution, and combustion in the containment of a nuclear power plant using MAAP, GASFLOW, and COM3D. KAERI developed the COM3D analysis methodology on the basis of the COM3D validation results against the experiments of ENACCEF and THAI. The proposed analysis methodology accurately predicts the peak overpressure with an error range of approximately ±10% using the Kawanabe turbulent flame speed model. KAERI performed a hydrogen flame acceleration analysis using the multi-dimensional hydrogen analysis system for a severe accident initiated by a station blackout (SBO) under the assumption of 100% metal-water reaction in the reactor pressure vessel for evaluating an overpressure buildup in the Advanced Power Reactor 1400 MWe (APR1400). The COM3D calculation results using the established analysis methodology showed that the calculated peak pressure i...