Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (original) (raw)

Natural Degradation and Biodegradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments

Journal of Polymers and the Environment, 2015

In this study, natural degradation and biodegradation of poly(3-hydroxybuyrate-co-3-hydroxyvalerate) (PHBV) films were followed in different marine environments. First of all, ageing of PHBV films was investigated in natural seawater for 180 days and degradation was followed by means of weight loss measurements, scanning electron microscopy (SEM), differential scanning calorimetry and steric exclusion chromatography. In a second part, biodegradation tests were performed on PHBV powder, by following carbon dioxide (CO2) release(,) to highlight the PHBV bioassimilation of marine microorganisms. Three different marine environments were considered for biodegradation tests: a solid inoculum with foreshore sand, a solid-liquid inoculum with sand and seawater and a liquid inoculum with seawater. In the latter, a biofilm was added to study the influence of microorganisms on biodegradation kinetics. The films aged under natural conditions show a large loss of weight after 180 days in immersion, around 36 %, confirmed by SEM pictures which show an increase of the surface erosion and a decrease of the sample thickness. Microorganisms' attack occurred as suggested by CO2 release during biodegradation tests, whatever the environment studied.

Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water

Polymer Testing, 2014

Accelerated ageing was performed in distilled water at different temperatures (25, 30, 40 and 50°C) on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which is a biodegradable biopolymer, in order to estimate its lifetime in aqueous environment. In a first part, degradation mechanisms were followed by gravimetry, tensile tests and steric exclusion chromatography. Both immersion and relative humidity have been examined. In a second part, the strain at break was used as an indicator for lifetime prediction with an Arrhenius extrapolation. The study revealed the presence of only one irreversible degradation mechanism, i.e. hydrolytic degradation, which is temperature dependant. So, within the approach assumptions, the lifetime in distilled water of PHBV following Arrhenius behaviour can be predicted.

The degradation kinetics of poly(3-hydroxybutyrate) under non-aqueous and aqueous conditions

European Polymer Journal, 2002

The degradation of poly(3-hydroxybutyrate), P(3HB), was determined in two conditions namely, a non-aqueous condition of chloroform-methanol mixture in the presence of either one of the two following catalysts, 4-toluenesulphonic acid and imidazole, ancl secondly in an aqueous condition of increasing pH. From our study, a random chain scission of PHB occurred in the non-aqueous condition while the degradation of PHB in the presence of water occurred through surface hydrolysis with no change in the molecular weight. In the surface hydrolysis of the polymer, the rate was increased with higher pH 'ralues.

Degradation of Poly(3-hydroxybutyrate) and its Derivatives: Characterization and Kinetic Behavior

Chemistry & Chemical Technology, 2012

We focused on hydrolytic degradation kinetics at 310 and 343 K in phosphate buffer to compare PLA and PHB kinetic profiles. Besides, we revealed the kinetic behavior for copolymer PHBV (20 % of 3-hydroxyvalerate) and the blend PHB-PLA (1:1). The intensity of biopolymer hydrolysis is characterized by total weight lost and the viscosity-averaged molecular weight (MW) decrement. The degradation is enhanced in the series PHBV < PHB < PHB-PLA blend < PLA. Characterization of PHB and PHBV includes MW and crystallinity evolution (X-ray diffraction) as well as AFM analysis of PHB film surfaces before and after aggressive medium exposition. The important impact of MW on the biopolymer hydrolysis is shown.

Study of The Biodegradation of Poly (3- Hydroxybutyrate) (PHB) and High-Density Polyethylene (HDPE) by Microorganisms from the Sea waters of the Atlantic Coast of Brazil

2021

The objective of this study was to evaluate the biodegradation of Poly (hydroxybutyrate) (PHB) and high-density polyethylene (HDPE) in static systems, using as fluid the seawater of the Coastal Region of the State of Pernambuco (Brazil). The physical and chemical modifications of the polymers, as a function of biodegradation, were evaluated by Fourier transform infrared spectroscopy (FTIR), mechanical tensile assay, differential scanning calorimetry (DSC), gravimetric test, and microbiological analysis. Through the FTIR, it was possible to observe in the PHB a decrease of 23.22% in the carbonyl index for the crystalline phase and 32.30% in the amorphous phase after 180 days, which evidences the effect of the biodegradation present. The mechanical properties of PHB were altered with biodegradation, but the thermal properties remained. During the gravimetric tests, there was a reduction in mass and consequently higher degradation rates for PHB, which is corroborated by the microbiolog...

The effect of natural fillers on the marine biodegradation behaviour of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)

Scientific Reports, 2021

Worldwide, improper disposal of plastics is instigating environmental initiatives to combat plastics accumulation of in the environment and the world’s oceans. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites with Miscanthus (Misc) fibres and distillers’ dried grains with solubles (DDGS) were studied to ascertain if natural fibres and proteinaceous fillers can improve polyhydroxyalkanoate marine biodegradability. Using ASTM standard D7991-15, the biodegradation of PHBV, PHBV with Misc (15 and 25 wt%) and PHBV with DDGS (15 and 25 wt%) was performed in a simulated marine environment for the first time, as indicated by a literature survey. PHBV/Misc (85/15) and (75/25) biocomposites showed 15 and 25% more biodegradation compared to PHBV, respectively. Proteinaceous PHBV/DDGS (85/15) and (75/25) biocomposites showed 17 and 40% more biodegradation compared to PHBV, respectively. Furthermore, PHBV/Misc (75/25) and PHBV/DDGS (75/25) biocomposites were marine biodegraded i...

Mechanism and kinetics of the hydrolytic degradation of amorphous poly(3-hydroxybutyrate)

Polymer Degradation and Stability

Amorphous poly(3-hydroxybutyrate) films prepared by compression molding and solvent casting were degraded in aqueous media at different pH values. The time dependence of degradation was monitored by the measurement of weight loss, the extraction of the degradation products from the degrading sample, as well as by UV-Vis spectrophotometry and HPLC analysis of the aqueous solution. The results proved that degradation takes place mainly in the bulk of the samples and not on their surface. The overall rate of degradation depends strongly on pH; it increases with increasing pH values. Metabolite extraction and chromatography proved that degradation does not occur randomly, but with larger frequency at the end of the chains. By assuming that the hydrolysis of PHB is a SN2 type nucleofil substitution reaction, a kinetic model was proposed which describes the formation of various degradation products. The diffusion of metabolites was also accommodated into the model thus the concentration in the aqueous solution could also be predicted well. The correlation between prediction and experimental results is excellent. The model can be extended also for the description of the hydrolytic degradation of other aliphatic polyesters. 1 INTRODUCTION Poly(3-hydroxybutyrate) (PHB) is one of the most important biopolyesters from the family of polyhydroxyalkanoates which are produced by microorganisms from renewable resources [1-7]. Unlike in the synthetic polymerization of PHB, the production of the biopolymer by microbial fermentation excludes the presence of toxic products [8-10] and the hydrolytic degradation of PHB leads mainly to the monomer D-3-hydroxybutyric acid. This acid is a normal component of blood and is one of the three ketones which are

Thermal Properties and Biodegradability Studies of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Journal of Polymers and the Environment, 2012

For investigating the relationship between thermal properties and biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), several films of PHBV containing different polyhydroxyvalerate (HV) fractions were subjected to degradation in different conditions for up to 49 days. Differential scanning calorimetry (DSC), thermogravimetry (TG), specimen weight loss and scanning electron microscopy (SEM) were performed to characterize the thermal properties and enzymatic biodegradability of PHBV. The experimental results suggest that the degradation rates of PHBV films increase with decreasing crystallinity; the degradability of PHBV occurring from the surface is very significant under enzymatic hydrolysis; the crystallinity of PHBV decreased with the increase of HV fraction in PHBV; and no decrease in molecular weight was observed in the partially-degraded polymer.

Environmental Degradation of Blends of Atactic Poly[(R,S)-3-hydroxybutyrate] with Natural PHBV in Baltic Sea Water and Compost with Activated Sludge

Journal of Polymers and the Environment, 2008

Degradation of atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB) binary blends with natural poly(3hydroxybutyrate-co-3-hydroxyvalerate) (PHBV, 12 mol% of 3HV units), has been investigated and compared with plain PHBV in the compost containing activated sludge and under marine exposure conditions in the dynamic water of the Baltic Sea. Characteristic parameters of compost and the Baltic Sea water were monitored during the incubation period (6 weeks) and their influence on the degree of biodegradation is discussed. After specified degradation times of the experiments the weight loss of the samples, surface changes, changes in molecular weight and polydispersity as well as changes of the composition and thermo-mechanical properties of the blends have been evaluated. Macroscopic observations of the samples were accompanied by investigations using optical microscopy, size-exclusion chromatography (SEC), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and tensile testing. The degree of degradation of blends of a-PHB with PHBV depends on the blend composition and environmental conditions. In both environments studied the weight loss of plain PHBV was more significant than changes the molecular weight. In both environments only enzymatic degradation of the blends, which proceeds via surface erosion mechanisms, was observed during the incubation period.

Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater

Polymer Degradation and Stability, 2014

Pollution of nature by plastics is a major environmental problem and the challenge for the future is to manage the lifetime of polymers better. The aim of this study is to establish a baseline on degradation mechanism and degradation kinetics for lifetime prediction of polylactide (PLA) in a marine environment. The ageing of PLA was accelerated by raising temperature in distilled water, filtered and renewed seawater and natural seawater. Samples were immersed in distilled water for six months at different temperatures (25, 30, 40 and 50°C) in order to evaluate the influence of temperature on PLA degradation kinetics and to predict lifetime. Then, samples were immersed in seawater both in the laboratory and at sea, in order to compare the effects of environment, marine organisms and salt, on degradation. The different degradation steps were followed by gravimetry, tensile tests, scanning electron microscopy (SEM), steric exclusion chromatography (SEC) and differential scanning calorimetry (DSC). In distilled water, accelerated ageing of PLA is complex with deviation from Fickian behaviour at higher temperature. Moreover, immersion in distilled water induces morphological changes, in particular holes, which are absent in seawater at 40°C for the same immersion time. Indeed, seawater has little impact on the diffusion kinetics but affects M ∞ values, which are slightly lower compare to the distilled water uptake.