Performance investigation of WifiLOC positioning system (original) (raw)

A new method for improving Wi-Fi-based indoor positioning accuracy

Wi-Fi and smartphone based positioning technologies are play-ing a more and more important role in Location Based Service (LBS) industries due to the rapid development of the smartphone market. However, the low positioning accuracy of these technologies is still an issue for indoor positioning. To ad-dress this problem, a new method for improving the indoor posi-tioning accuracy was developed. The new method initially used the Nearest Neighbor (NN) algorithm of the fingerprinting meth-od to identify the initial position estimate of the smartphone us-er. Then two distance correction values in two roughly perpen-dicular directions were calculated by the path loss model based on the two signal strength indicator (RSSI) values observed. The errors from the path loss model were eliminated by differencing two model-derived distances from the same access point. The new method was tested and the results compared and assessed against that of the commercial Ekahau RTLS system and the NN algorithm. The preliminary results showed that the positioning accuracy has been improved consistently after the new method was applied and the root mean square accuracy improved to 3.3 m from 3.8 m compared with the NN algorithm.

An Improved Indoor Positioning System Based on WLAN

2016

Despite of widespread usage of Global Positioning System (GPS), this system is considered inefficient for indoor areas. Although the most prominent positioning system is Global Positioning System, this system uses some electromagnetic waves which are unable to pass thick obstacles such as concrete roofs and trees [1]. Thus, it cannot be considered as a robust infrastructure for indoor positioning purposes. Since, other signal networks like Wireless Local Area Network (WLAN) can be an appropriate alternative for indoor spaces. In addition, widespread usage of mobile smart instruments has provided the possibility of ubiquitous system’s development.

IEEE 802.11 WLAN based Real Time Indoor Positioning: Literature Survey and Experimental Investigations

Procedia Computer Science, 2014

Indoor positioning has emerged as a hot topic that gained gradual interest from both academia and industry. Accurate estimation is necessitated in a variety of location-based services such as healthcare, repository tracking, and security. Additional equipment for location sensing could be used for accurate estimation, but they are not widely used in general because those alternatives will cause specialization in brands and will be costly. Among all suggestions in literature including hardware and intense sophisticated computations, a versatile and low-cost location determination technology, which uses existing WLAN infrastructure of indoor environments, has been developed without incurring extra charge; this method is rising as a way of positioning. WLAN is capable to be used within an indoor positioning system soon in real environments. It is a good alternative in terms of accuracy, precision and cost, compared to similar systems. Especially with the common usage of smartphones and tablet PCs, it became the most easyto-use method, too. In this paper, we present a brief survey on such systems, methodologies, techniques and discuss advantages and disadvantages of each of these.

Indoor Location Estimation Utilizing Wi-Fi Signals

International Journal of Emerging Trends in Engineering Research, 2020

Global Positioning System is commonly been used for locating a position of a specific structure in finding geographical coordinates of a target area. Though, this application is still having a restricted in term of the signals, might not well operated and ineffective for indoor usage. The study aim is to develop positioning and localization systems by using Wi-Fi signal. Estimation was made based on the measurement of wireless distance for estimation the user's coordinates. Analysis of views called the fingerprint algorithm is used in this study. The algorithm involved two phases over an offline and the online phases of the survey. Unidentified user's coordinates will be in the online phase by comparative databases collected in the survey phase. MATLAB Graphical User Interface and Android has been used to develop a user interface for simulation purposes. Several analyses were performed to define the precision and efficiency of occurred error as the number of access points and the traffic environment. Finally, the user required to provide several inputs e.g. the exact location and the RSS from AP's number at the present location. The simulation-based software will evaluate the estimation location and positioning of the user and will match to user's precise location.

Location Fingerprinting Technique for WLAN Device-Free Indoor Localization System

Wireless Personal Communications, 2016

Device-free indoor localization (DFIL) system can locate the position of human body in the indoor environment by observing the changes in the received signal strength indicator (RSSI) of the wireless local area network (WLAN). The accuracy of a DFIL system is depreciated, as the change in the indoor environment due to furniture and other infrastructure movement. This paper investigates the development of testbed of the WLAN network for measuring the RSSI in various indoor environment, as the initial step for designing the fingerprinting-based algorithms for WLAN network. The database of RSSI fingerprint is created initially and then a fingerprint-based algorithm is developed for locating the position of a human body in the indoor environment. The localization algorithm tests the minimum distance in the RSSI values related to the different test points in the indoor environment. This work further demonstrates that how the fingerprints of RSSI are collected and which network configurations generate the most reliable RSSI measurement. For the first phase of designing the testbed, the configurations of different equipment and various tools are elaborated in the indoor environment. For the second phase the RSSI is measured in different propagation indoor environment. The extensive experiments were performed that allow quantification of how changes in an environment affect accuracy. Thus, it is demonstrated that each link offers a viable approach to developing a more robust system for device-free localization that is less susceptible to changes in the environment.

Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments

Sensors

The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples' presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples' presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples' presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.

On indoor position location with wireless LANs

The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002

Location aware services are becoming attractive with the deployment of next generation wireless networks and broadband multimedia wireless networks especially in indoor and campus areas. To provide location aware services, obtaining the position of a user accurately is important. While it is possible to deploy additional infrastructure for this purpose, using existing communications infrastructure is preferred for cost reasons. Because of technical restrictions, location fingerprinting schemes are the most promising. In this paper we are presenting a systematic study of the performance/tradeoff and deployment issues. In this paper we present some experimental results towards such a systematic study and discuss some issues related to the indoor positioning problem.

A Study of Fingerprint-based Methods for Training Phase in Wi-Fi Indoor Positioning Systems

The use of Indoor Positioning Systems (IPSs) is growing in the last years on different scopes, from faculties to airports, hospitals and big malls among others. There is a group contained in these kind of systems to be highlighted, those based on the most common technologies like Wi-Fi because the deployment effort is already done. As there is a new trending study topicon using Fingerprinting collection techniques for positioning,this document exposes a survey of Wi-Fi Indoor Positioning Systems in an offline phase, specifically those that use the Fingerprint collection technique, focusing on the cost of that process in terms of the sampling mode and the interaction required with the user.

On Potentials and Limitations of a Hybrid WLAN-RFID Indoor Positioning Technique

International Journal of Navigation and Observation, Hindawi, special issue "Integrating Radio Positioning and Communications: New Synergies", Vol. 2010, 11 pages, 2010

This paper addresses the important issue of position estimation in indoor environments. Starting point of the research is positioning techniques that exploit the knowledge of power levels of RF signals from multiple 802.11 WLAN APs (Access Points). In particular, the key idea in this paper is to enhance the performance of a WLAN fingerprinting approach by coupling it to a RFIDbased procedure. WLAN and RFID technologies are synergistically used to provide a platform for a more performing positioning process, in which the very strong identification capabilities of the RFID technology allow to increase the accuracy of positioning systems via WLAN fingerprinting. The algorithm performance is assessed through general and repeatable experimental campaigns, during which the main algorithm parameters are dimensioned. The results testify both to the feasibility of the solution and to its higher accuracy (attainable at very reduced costs) compared to traditional positioning techniques.