Microplastics Affect Rates of Locomotion and Reproduction via Dietary Uptake in Globally Invasive Snail Physa acuta (original) (raw)
Related papers
Water, Air, & Soil Pollution, 2021
Microplastics are ubiquitous in aquatic ecosystems. They can be found at the surface, in the water column, and in sediments. Multiple negative impacts of microplastics on aquatic organisms have been reported, with most studies focusing on marine ecosystems. However, the effects of microplastics on freshwater ecosystems have been less studied, with a few studies focusing on benthic invertebrates. In this study, we exposed the New Zealand mud snail Potamopyrgus antipodarum (Gray, 1843) to an environmental range of concentrations of polystyrene microparticles (size range from 0.01 to 514 µm at 100, 500, and 1000 mg microplastics/kg dry weight (dw) of sediment) and two supra-environmental concentrations (2000 and 4000 mg/kg dw sediment). The impacts of the exposure to microplastics on mortality, behavior, and reproduction were assessed at long-term exposure (31 days). Mortality and reproduction were not significantly affected by microplastics. On the contrary, most of the microplastic t...
Marine Pollution Bulletin, 2020
Microplastic ingestion by intertidal fauna is a well-documented phenomenon, with emphasis on the physiological consequences of microplastic exposure. However, the behavioural effects of microplastic ingestion have not been explored to the same degree, even in species with documented microplastic ingestion. In this study, the predator-avoidance emergence response of Littorina littorea was assessed and related to microplastic levels within the samples. This is a novel approach to microplastic behavioural experiments, whereby current environmental L. littorea microplastic levels are assessed, rather than levels vastly in excess of those recorded under field conditions. The results showed no difference in emergence likelihood or emergence latency related to microplastic abundance. This study shows that microplastics, at their current environmental levels, do seem not affect L. littorea emergence behaviour.
Environmental Pollution
Nowadays, microplastics represent one of the main threats to marine ecosystems, being able to affect organisms at different stages of their life cycle and at different levels of the food web. Although the presence of plastic debris has been reported in different habitats and the ability to ingest it has been confirmed for different taxa, few studies have been performed to elucidate the effects on survival and development of marine animals. Thus, we explored the effects of different environmental concentrations of polystyrene microbeads on the early stages of two invertebrate species widespread in the Mediterranean shallow waters: the pelagic planktotrophic pluteus larvae of the sea urchin Paracentrotus lividus and the filter-feeding sessile juveniles of the ascidian Ciona robusta. We evaluated the effects on larvae and juvenile development and determined the efficiency of bead ingestion. The feeding stages of both species proved to be extremely efficient in ingesting microplastics. In the presence of microbeads, the metamorphosis of ascidian juveniles was slowed down and development of plutei altered. These results prompted the necessity to monitor the populations of coastal invertebrates since microplastics affect sensitive stages of life cycles and may have consequences on generation recruitment. Polystyrene microplastics can alter sensitive developmental stages of marine invertebrates, being filter-feeding organisms more effective in ingesting plastic particles.
PeerJ
Background Microplastics (MPs) are pollutants in rivers and marine environments. Rivers can be sources and sinks of MPs that enter the biota. Previous studies focusing on freshwater species are quite limited, especially for gastropods. Freshwater gastropods are essential to aquatic ecosystems because they are food to other aquatic animals, such as fish, shrimp, and crabs. They are a crucial link in the food chain between water resources and human food. Therefore, this study aimed to investigate MP accumulation in freshwater gastropods, commonly known as snails (Filopaludina sumatrensis speciosa and Pomacea canaliculata), in a river flowing into a shallow coastal lagoon. Method In this study, snail tissue samples were digested with 30% hydrogen peroxide. The mixture was heated at 60 °C for 24 h. MP particles were identified, counted, and characterized (shape, size, and color) by visual identification under a stereomicroscope. Furthermore, polymer-type identification was performed usi...
The physical impacts of microplastics on marine organisms: A review
Environmental Pollution, 2013
Plastic debris at the micro-, and potentially also the nano-scale, are widespread in the environment. Microplastics have accumulated in oceans and sediments worldwide in recent years, with maximum concentrations reaching 100 000 particles m 3. Due to their small size, microplastics may be ingested by low trophic fauna, with uncertain consequences for the health of the organism. This review focuses on marine invertebrates and their susceptibility to the physical impacts of microplastic uptake. Some of the main points discussed are (1) an evaluation of the factors contributing to the bioavailability of microplastics including size and density; (2) an assessment of the relative susceptibility of different feeding guilds; (3) an overview of the factors most likely to influence the physical impacts of microplastics such as accumulation and translocation; and (4) the trophic transfer of microplastics. These findings are important in guiding future marine litter research and management strategies.
Feeding type affects microplastic ingestion in a coastal invertebrate community
Marine pollution bulletin, 2016
Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250beadsmL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.
Environmental pollution (Barking, Essex : 1987), 2015
We studied the uptake of microplastics under field conditions. At six locations along the French-Belgian-Dutch coastline we collected two species of marine invertebrates representing different feeding strategies: the blue mussel Mytilus edulis (filter feeder) and the lugworm Arenicola marina (deposit feeder). Additional laboratory experiments were performed to assess possible (adverse) effects of ingestion and translocation of microplastics on the energy metabolism (cellular energy allocation) of these species. Microplastics were present in all organisms collected in the field: on average 0.2 ± 0.3 microplastics g(-1) (M. edulis) and 1.2 ± 2.8 particles g(-1) (A. marina). In a proof of principle laboratory experiment, mussels and lugworms exposed to high concentrations of polystyrene microspheres (110 particles mL(-1) seawater and 110 particles g(-1) sediment, respectively) showed no significant adverse effect on the organisms' overall energy budget. The results are discussed in...
Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs
Integrated environmental assessment and management, 2017
To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake...
Scientific Reports
Understanding the impacts of microplastics on living organisms in aquatic habitats is one of the hottest research topics worldwide. Despite increased attention, investigating microplastics in underwater environments remains a problematic task, due to the ubiquitous occurrence of microplastic, its multiple modes of interactions with the biota, and to the diversity of the synthetic organic polymers composing microplastics in the field. Several studies on microplastics focused on marine invertebrates, but to date, the benthic sea slugs (Mollusca, Gastropoda, Heterobranchia) were not yet investigated. Sea slugs are known to live on the organisms on which they feed on or to snack while gliding over the sea floor, but also as users of exogenous molecules or materials not only for nutrition. Therefore, they may represent a potential biological model to explore new modes of transformation and/or management of plastic, so far considered to be a non-biodegradable polymer. In this study we ana...