Human Papillomavirus Infections in Nonmelanoma Skin Cancers From Renal Transplant Recipients and Nonimmunosuppressed Patients (original) (raw)
Background: Nonmelanoma carcinomas of the skin represent the most frequent cancers among the Caucasian population worldwide. They occur with high frequency in renal allograft recipient patients after prolonged immunosuppression. Purpose: We analyzed tumors obtained from both immunosuppressed and nonimmunosuppressed patients for human papillomavirus (HPV) DNA. Methods: Twenty-nine specimens of nonmelanoma carcinomas of the skin were obtained from 19 renal allograft recipient patients; these included 20 specimens of squamous cell carcinoma (SCC) from 11 patients, five specimens of basal cell carcinoma (BCC) from four patients, and four specimens of carcinoma in situ (CIS) from four patients. Forty-one specimens of nonmelanoma carcinomas of the skin were obtained from 32 nonimmunosuppressed patients; these included 26 SCC specimens from 19 patients, 11 BCC specimens from nine patients, and four keratoacanthoma (benign epithelial tumor) specimens from four patients. A polymerase chain reaction method involving use of degenerate oligonucleotide primers, in which the conserved region of the open reading frame of the HPV LI (major capsid protein) gene is amplified, was used to amplify total cellular DNA purified from individual tumors. The DNA of each specimen was subjected to 16 different amplification reactions; different primer combinations were used in order to increase the sensitivity and specificity of HPV detection. Resulting products were probed with a radioactively labeled, degenerate oligonucleotide. HPV-specific DNA was either sequenced directly after elution from the gel or amplified with semi-nested, degenerate primers, after which the products were cloned and sequenced. Sequences were compared with all known papillomavirus sequences. Results: Thirteen (65%) of the 20 SCC specimens and three of the five BCC specimens from immunosuppressed (renal allograft recipient) patients contained identifiable HPV-related sequences, among them 13 putative novel HPV genomes. In addition, all other malignant tumor specimens from this patient group revealed faint signals upon amplification and hybridization; the origin of these signals has not been identified in the present study. In nonimmunosuppressed