Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification (original) (raw)

Electrospun nanofibers: role of nanofibers in water remediation and effect of experimental variables on their nano topography and application processes

Environmental Science: Water Research & Technology, 2021

Water is the elixir of life and the most elementary need for the survival of human beings on planet Earth. With rapid industrialization, globalization and human exploitation, natural water resources are diminishing at a startling rate wherein availability of potable water has drastically decreased in recent times and hence membrane technology is a highly pursued area for water purification. The simple and cost-effective electrospinning technique has evolved to be a state-of-the-art method for developing nanofibers of tailored thickness and diameters by combining a broad range of starting materials. This comprehensive review emphasizes on the demonstration of electrospun nanofibers based on their fundamental principles and property–parameter interrelationships as useful filtration membranes. A brief discussion has been provided aiming towards the history of electrospinning, typical apparatus set-up and experimental variables, and latest solutions provided by the scientific community for large scale manufacturing of nanofibers. Further, a detailed overview of the design, fabrication, controlled morphologies, surface functionalization and physicochemical properties of the electrospun nanofibers followed by their useful contributions in the form of filtration membranes and sorbents for water remediation processes such as microfiltration, desalination, heavy metal ion removal, dye removal and oil–water separation has been discussed in detail.

Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment

Journal of Water Reuse and Desalination

The need for beneficial innovations in filtration expertise has lead to little consideration of cutting-edge materials, such as nanofiber membranes for water distillation. The presence of organic matter and traces of organics accumulation in wastewater poses a major problem and current technologies such as coagulation/flocculation and chlorine technology are unable to yield satisfying results. The extra volume of sludge generated by these technologies needs further processing and disposal. Nanotechnology has outstanding potential for filtration applications due to its capability to create precise structural controlled materials for such requirements. Electrospun nanofibrous membranes (ENMs) are cutting edge membrane technology that offer substantial high flux and high rejection rates compared to conventional membranes. ENMs present a revolution in water and sewage purification by offering a lightweight, cost-effective, and lower energy consumption process compared with conventional ...

Application of the Electrospun Nanofibers in Wastewater Treatment

2011

Jaroslav Lev , Marek HOLBA , Libor KALHOTKA , Monika SZOSTKOVÁ , Dušan KIMMER d a ASIO spol. s r.o.,Tuřanka 1, 627 00 Brno, Czech Republic, EU, lev@asio.cz, b Institute of Botany, Academy of Science of the Czech Republic, v.v.i., Lidická 25/27, 657 20 Brno, Czech Republic EU, holba@asio.cz b c Faculty of Agronomy of Mendelu in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, EU, libor.kalhotka@mendelu.cz, szostkov@mendelu.cz

Review Advancement in Electrospun Nanofibrous Membranes Modification and Their Application in Water Treatment

2015

Water, among the most valuable natural resources available on earth, is under serious threat as a result of undesirable human activities: for example, marine dumping, atmospheric deposition, domestic, industrial and agricultural practices. Optimizing current methodologies and developing new and effective techniques to remove contaminants from water is the current focus of interest, in order to renew the available water resources. Materials like nanoparticles, polymers, and simple organic compounds, inorganic clay materials in the form of thin film, membrane or powder have been employed for water treatment. Among these materials, membrane technology plays a vital role in removal of contaminants due to its easy handling and high efficiency. Though many materials are under investigation, nanofibers driven membrane are more valuable and reliable. Synthetic methodologies applied over the modification of membrane and its applications in water treatment have been reviewed in this article.

Advancement in Electrospun Nanofibrous Membranes Modification and Their Application in Water Treatment

Membranes, 2013

Water, among the most valuable natural resources available on earth, is under serious threat as a result of undesirable human activities: for example, marine dumping, atmospheric deposition, domestic, industrial and agricultural practices. Optimizing current methodologies and developing new and effective techniques to remove contaminants from water is the current focus of interest, in order to renew the available water resources. Materials like nanoparticles, polymers, and simple organic compounds, inorganic clay materials in the form of thin film, membrane or powder have been employed for water treatment. Among these materials, membrane technology plays a vital role in removal of contaminants due to its easy handling and high efficiency. Though many materials are under investigation, nanofibers driven membrane are more valuable and reliable. Synthetic methodologies applied over the modification of membrane and its applications in water treatment have been reviewed in this article.

Synthesis and Water Treatment Applications of Nanofibers by Electrospinning

Processes

In the past few decades, the role of nanotechnology has expanded into environmental remediation applications. In this regard, nanofibers have been reported for various applications in water treatment and air filtration. Nanofibers are fibers of polymeric origin with diameters in the nanometer to submicron range. Electrospinning has been the most widely used method to synthesize nanofibers with tunable properties such as high specific surface area, uniform pore size, and controlled hydrophobicity. These properties of nanofibers make them highly sought after as adsorbents, photocatalysts, electrode materials, and membranes. In this review article, a basic description of the electrospinning process is presented. Subsequently, the role of different operating parameters in the electrospinning process and precursor polymeric solution is reviewed with respect to their influence on nanofiber properties. Three key areas of nanofiber application for water treatment (desalination, heavy-metal ...

Water Treatment using Electrospun PVC/PVP Nanofibers as Filter Medium

International Journal of Material Science and Research, 2018

One of the prevailing problems afflicting everybody globally is the scarcity of clean and portable water supply. Water crisis constitutes a major issue to present status of world's water resources. Water pollution is now becoming a critical issue globally. Water filtration/purification with the latest technology is the urgent need in today's economy. Electrospun nanofibers with high filtration efficiency, small pore size, high permeability and low cost are materials of choice for many filtration applications. These outstanding properties are most suitable for filtration media. In this study, Polyvinyl chloride (PVC) was dissolved in N, N-Dimethylacetamide (DMAC) and the small weight percentages of Polyvinylpyrrolidone (PVP) was added in order to make the nanoporous membrane surface hydrophilic for escalating the filtration performance rate and stainability. Two different water samples (dam water and city wastewater) were used in this study. For dam water sample, the parameter such as, PH, turbidity, TDS, conductivity, Ca++, Mg++, hardness, sulfates, nitrates, fluoride, chloride, alkalinity and silica were measured and found out to be 7.5, 24.

Electrospun Nanofibrous Membranes for Water Treatment

Advances in Membrane Technologies

Nanofibrous structures offer a lot of fascinating features due to large specific surface area. This makes them promising for a wide range of applications, most specifically water treatment. This new generation of highly porous membranes exhibits great prospect to be used in various separation applications due to their distinguished features such as remarkably high porosity (≥90%) and interconnected 3D pore structure. As compared with the conventional techniques, Electrospinning has been highlighted for developing unique porous membranes. Electrospun nanofibrous membranes have been more and more investigated to a lot of advanced water treatment purposes. This chapter reviews the updates on electrospun nanofibrous membranes with a particular prominence in recent accomplishments, bottlenecks, and future perspectives in water treatment. To start, the basic principles of electrospinning are discussed. Next, past and recent efforts for fabricating electrospun MF membranes for various applications are reviewed. The application of electrospun nanofibers as the scaffold for TFC (thin-film composite) membranes in the pressure-and osmotic-membrane processes is then introduced. The new application of electrospun nanofibrous membranes for the thermally-driven MD (membrane distillation) process for water treatment as well as strategies for performance enhancement is discussed. To finish, conclusions and perspectives are stated according to recent developments.

A review on electrospun bio-based polymers for water treatment

Express Polymer Letters, 2015

Over the past decades, electrospinning of biopolymers down to nanoscale garnered much interest to address most of the millennia issues related to water treatment. The fabrication of these nanostructured membranes added a new dimension to the current nanotechnologies where a wide range of materials can be processed to their nanosize. Electrospinning is a simple and versatile technique to fabricate unique nanostructured membranes with fascinating properties for a wide spectrum of applications such as filtration and others. These nanostructured membranes, fabricated by electrospinning, were found to be of a paramount importance because of their advanced inherited properties such as large surface-to-volume ratio, as well as tuneable porosity, stability, and high permeability. The extensive research conducted on these materials extended the success of electrospinning not only to bio-based polymer nanofibres, but to their hybrids and their derivatives. The technique also created avenues for advanced and massive production of nanofibres. This paper reviews the recent developments in the electrospinning technique. Electrospinning of biopolymers, their blends and functionalization using metals/metal oxides, and the potential applications of electrospun nanofibrous membranes in water filtration are discussed.