An Enhanced Evolutionary Based Feature Selection Approach Using Grey Wolf Optimizer for the Classification of High-dimensional Biological Data (original) (raw)

Feature selection (FS) is a pre-processing step that aims to eliminate the redundant and less-informative features to enhance the performance of data mining techniques. It is also considered as one of the key success factors for classification problems in high-dimensional datasets. This paper proposes an efficient wrapper feature selection method based on Grey Wolf Optimizer (GWO). GWO is a recent metaheuristic algorithm that has been widely employed to solve diverse optimization problems. However, GWO mainly follows the search directions toward the leading wolves, making it prone to fall into local optima, especially when dealing with high-dimensional problems, which is the case when dealing with many biological datasets. An enhanced variation of GWO called EGWO, which adapts two enhancements, is introduced to overcome this specific shortcoming. In the first place, the transition parameter concept is incorporated to move GWO from the exploration phase to the exploitation phase. Sev...