Bacterial Community Dynamics along a River-Wetland-Lake System (original) (raw)

Characteristics of spatial and seasonal bacterial community structures in a river under anthropogenic disturbances

Environmental Pollution, 2020

In this study, the seasonal characteristics of microbial community compositions at different sites in a river under anthropogenic disturbances (Maozhou River) were analyzed using Illumina HiSeq sequencing. Taxonomic analysis revealed that Proteobacteria was the most abundant phylum in all sites, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria and Firmicutes. The variations of the community diversities and compositions between the seasons were not significant. However, significant differences between sites as well as water and sediment samples were observed. These results indicated that sites under different levels of anthropogenic disturbances have selected distinct bacterial communities. pH, dissolved oxygen (DO), concentrations of total nitrogen (TN) and heavy metals were the main factors that influence the diversity and the composition of bacterial community. Specifically, the relative abundance of Proteobacteria was negatively correlated with pH and DO and positively correlated with TN, while Actinobacteria and Verrucomicrobia showed the opposite pattern. Moreover, positive correlations between the relative abundances of Firmicutes and Bacteroidetes and the concentration of heavy metals were also found. Results of functional prediction analysis showed no significant differences of the carbon, nitrogen and phosphorus metabolism across the sites and seasons. Potential pathogens such as Vibrio, Arcobacter, Acinetobacter and Pseudomonas were found in these samples, which may pose potential risks for environment and human health. This study reveals the effect of anthropogenic activities on the riverine bacterial community compositions and provides new insights into the relationships between the environmental factors and the bacterial community distributions in a freshwater ecosystem under anthropogenic disturbances.

The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics

Environmental Microbiology, 2008

Multiple forces structure natural microbial communities, but the relative roles and interactions of these drivers are poorly understood. Gradients of physical and chemical parameters can be especially influential. In traditional ecological theory, variability in environmental conditions across space and time represents habitat heterogeneity, which may shape communities. Here we used aquatic microbial communities as a model to investigate the relationship between habitat heterogeneity and community composition and dynamics. We defined spatial habitat heterogeneity as vertical temperature and dissolved oxygen (DO) gradients in the water column, and temporal habitat heterogeneity as variation throughout the open-water season in these environmental parameters. Seasonal lake mixing events contribute to temporal habitat heterogeneity by destroying and re-creating these gradients. Because of this, we selected three lakes along a range of annual mixing frequency (polymictic, dimictic, meromictic) for our study. We found that bacterial community composition (BCC) was distinct between the epilimnion and hypolimnion within stratified lakes, and also more variable within the epilimnia through time. We found stark differences in patterns of epilimnion and hypolimnion dynamics over time and across lakes, suggesting that specific drivers have distinct relative importance for each community.

The interplay between bacterial community composition and the environment determining function of inland water bacteria

Limnology and Oceanography, 2010

We hypothesized that habitats differing in water flow regime would differ in bacterial function either because of differences in the local environment, in bacterial community composition (BCC), or in the mechanism shaping BCC (community assembly). In 20 lakes and 17 inlet streams BCC was analyzed by terminal restriction fragment length polymorphism of the gene coding for 16S ribosomal RNA, and bacterial function was estimated as bacterial production rate (BP, measured as leucine incorporation) per content of dissolved organic carbon (DOC) (BP : DOC). BCC in both lakes and streams appeared to be shaped by local environmental forces (i.e., species sorting according to metacommunity theory), but not by massive introduction of cells from the drainage area (mass effect). BP : DOC was lower in streams than in lakes, which appeared to be both because of differences in BCC and environment between lakes and streams, independent of each other. We found no support for an effect of water flow regime in itself (i.e., cell dispersal rate) causing the lower functionality of the streams. In streams, BP : DOC was correlated to both BCC and environment, independent of each other, while in lakes function could not be explained by either BCC or environment. The greater environmental variability among our streams than among our lakes may be the cause for the stronger BCC-function coupling in our streams, since smaller environmental variation among our lakes would allow a greater functional redundancy.

Structure of bacterial communities in diverse freshwater habitats

Canadian Journal of Microbiology, 2012

The structures and dynamics of bacterial communities from raw source water, groundwater, and drinking water before and after filtration were studied in four seasons of a year, with culture-independent methods. Genomic DNA from water samples was analyzed by the polymerase chain reaction – denaturing gradient gel electrophoresis system and by cloning of the 16S rRNA gene. Water samples exhibited complex denaturing gradient gel electrophoresis genetic profiles composed of many bands, corresponding to a great variety of bacterial taxa. The bacterial communities of different seasons from the four sampling sites clustered into two major groups: (i) water before and after filtration, and (ii) source water and groundwater. Phylogenetic analyses of the clones from the autumn sampling revealed 13 phyla, 19 classes, and 155 operational taxonomic units. Of the clones, 66% showed less than 97% similarities to known bacterial species. Representatives of the phyla Proteobacteria, Bacteroidetes, an...

Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds

The extent to which non-host-associated bacterial communities exhibit small-scale biogeographic patterns in their distribution remains unclear. Our investigation of biogeography in bacterial community composition and function compared samples collected across a smaller spatial scale than most previous studies conducted in freshwater. Using a grid-based sampling design, we abstracted 100 þ samples located between 3.5 and 60 m apart within each of three alpine ponds. For every sample, variability in bacterial community composition was monitored using a DNAfingerprinting methodology (automated ribosomal intergenic spacer analysis) whereas differences in bacterial community function (that is, carbon substrate utilisation patterns) were recorded from Biolog Ecoplates. The exact spatial position and dominant physicochemical conditions (for example, pH and temperature) were simultaneously recorded for each sample location. We assessed spatial differences in bacterial community composition and function within each pond and found that, on average, community composition or function differed significantly when comparing samples located 420 m apart within any pond. Variance partitioning revealed that purely spatial variation accounted for more of the observed variability in both bacterial community composition and function (range: 24-38% and 17-39%) than the combination of purely environmental variation and spatially structured environmental variation (range: 17-32% and 15-20%). Clear spatial patterns in bacterial community composition, but not function were observed within ponds. We therefore suggest that some of the observed variation in bacterial community composition is functionally 'redundant'. We confirm that distinct bacterial communities are present across unexpectedly small spatial scales suggesting that populations separated by distances of 420 m may be dispersal limited, even within the highly continuous environment of lentic water.

Different diversity-functioning relationship in lake and stream bacterial communities

FEMS Microbiology Ecology, 2013

Biodiversity patterns have been successfully linked to many ecosystem functions, and microbial communities have been suspected to harbour a large amount of functionally redundant taxa. We manipulated the diversity of stream and lake water column bacterial communities and investigated how the reduction in diversity affects the activities of extracellular enzymes involved in dissolved organic carbon degradation. Dissimilar communities established in cultures inoculated with stream or lake bacteria and utilized different organic matter compounds as indicated by the different extracellular enzyme activities. Stream bacterial communities preferentially used plant-derived organic material such as cellulose and hemicellulose. Communities obtained from the lake, where the longer residence time might permit the organic matter to age, efficiently degraded lignin-like material and also showed higher peptide degradation capacities. The results highlight a stronger negative effect of decreasing diversity on ecosystem multifunctionality for stream than for lake bacterial communities. We found a relatively higher multifunctional redundancy in the lake as compared to the stream-derived cultures and suggest that community assembly might shape diversity-functioning relationships in freshwater bacterial communities.

Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments

FEMS Microbiology Ecology, 2013

In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain d epartement (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here.

Rapid Changes in Microbial Community Structures along a Meandering River

Microorganisms

Streams and rivers convey freshwater from lands to the oceans, transporting various organic particles, minerals, and living organisms. Microbial communities are key components of freshwater food webs and take up, utilize, and transform this material. However, there are still important gaps in our understanding of the dynamic of these organisms along the river channels. Using high-throughput 16S and 18S rRNA gene sequencing and quantitative PCR on a 11-km long transect of the Saint-Charles River (Quebec, CA), starting from its main source, the Saint-Charles Lake, we show that bacterial and protist community structures in the river drifted quickly but progressively downstream of its source. The dominant Operational Taxonomic Units (OTUs) of the lake, notably related to Cyanobacteria, decreased in proportions, whereas relative proportions of other OTUs, such as a Pseudarcicella OTU, increased along the river course, becoming quickly predominant in the river system. Both prokaryotic and...

Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria)

Applied and Environmental Microbiology, 2005

Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition.