Effects of Heat Treatment on the Relative Amounts of Cellulose in Nanosilver-Impregnated and Untreated Poplar Wood (Populus alba) (original) (raw)

2019, Floresta e Ambiente

The present study investigated the effect of heat treatment on the relative amount of cellulose in untreated and nanosilver-impregnated poplar wood (Populus alba). The impacts on physical and mechanical properties were further studied. Specimens were heated at 145°C and 165°C in hot air medium. In order to enhance heat transfer to the inner parts of specimens, separate sets of specimens were first impregnated with nanosilver suspension in a pressure vessel. Differential scanning calorimetry (DSC) analyses showed that due to high thermal resistance of cellulose, the cellulose relative volume percent increased along with the increase in thermal temperature and the consequent degradation of other wood polymers (hemicellulose and lignin). High correlation was found between the cellulose relative volume percent versus different physical and mechanical properties. Impregnation with nanosilver increased thermal conductivity in the specimens resulting in an enhanced thermal degradation of hemicellulose and lignin, translated into an increased cellulose relative volume.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.