Human Osteoblast-Conditioned Media Can Influence Staphylococcus aureus Biofilm Formation (original) (raw)
Related papers
BMC Musculoskeletal Disorders, 2013
Background: Osteomyelitis is a severe and often debilitating disease characterized by inflammatory destruction of bone. Despite treatment, chronic infection often develops which is associated with increased rates of treatment failure, delayed osseous-union, and extremity amputation. Within affected bone, bacteria exist as biofilms, however the impact of biofilms on osteoblasts during disease are unknown. Herein, we evaluated the effect of S. aureus biofilms on osteoblast viability, osteogenic potential, and the expression of the pro-osteoclast factor, receptor activator of NF-kB ligand (RANK-L). Methods: Osteoblasts were exposed to biofilm conditioned media (BCM) from clinical wound isolates of Staphylococcus aureus under normal growth and osteogenic conditions to assess cellular viability and osteoblast differentiation, respectively. Cell viability was evaluated using a live/dead assay and by quantifying total cellular DNA at days 0, 1, 3, 5, and 7. Apoptosis following treatment with BCM was measured by flow-cytometry using the annexin V-FITC/PI apoptosis kit. Osteogenic differentiation was assessed by measuring alkaline phosphatase activity and intracellular accumulation of calcium and osteocalcin for up to 21 days following exposure to BCM. Expression of genes involved in osteogenic differentiation and osteoclast regulation, were also evaluated by quantitative real-time PCR. Results: BCM from clinical strains of S. aureus reduced osteoblast viability which was accompanied by an increase in apoptosis. Osteogenic differentiation was significantly inhibited following treatment with BCM as indicated by decreased alkaline phosphatase activity, decreased intracellular accumulation of calcium and inorganic phosphate, as well as reduced expression of transcription factors and genes involved in bone mineralization in viable cells. Importantly, exposure of osteoblasts to BCM resulted in up-regulated expression of RANK-L and increase in the RANK-L/ OPG ratio compared to the untreated controls. Conclusions: Together these studies suggest that soluble factors produced by S. aureus biofilms may contribute to bone loss during chronic osteomyelitis simultaneously by: (1) reducing osteoblast viability and osteogenic potential thereby limiting new bone growth and (2) promoting bone resorption through increased expression of RANK-L by osteoblasts. To our knowledge these are the first studies to demonstrate the impact of staphylococcal biofilms on osteoblast function, and provide an enhanced understanding of the pathogenic role of staphylococcal biofilms during osteomyelitis.
Study of Staphylococcus aureus Biofilm Ability to Destroy Bone Matrix in Absences of Host Immunity
2020
Purpose: Osteomyelitis is an infectious bone process leading to bone necrosis and destruction. Published reports on pathogen biofilm thus far have focused on indirect bone resorption mediated by host cells and factors secondary to immune system activation. However, direct bone resorption due to biofilm pathogen has not been adequately studied yet. This study aims to investigate the effect of biofilm pathogen in ex-vivo human bones in the absence of the host immune response using Raman spectroscopy and Scanning electron microscopy. Methods: Bone samples collected from patients who underwent knee replacement surgeries were inoculated with Staphylococcus aureus bacteria. Bacterial direct effects on the bone quality were then examined, at various time intervals, using Raman spectroscopy and scanning electron microscopy. Results: Raman spectroscopy and scanning electron demonstrated the destruction of bone structure and drop in bone quality. Conclusion: This experiment shows the direct effect of bacteria on bone during osteomyelitis in addition to the recognised destruction caused by the host immune system. Introduction: Osteomyelitis (OM) is bone inflammatory process secondary to an infectious organism leading to bone necrosis and destruction. Bone is a sterile organ resistant to bacterial colonisation. However, events like trauma, surgery, or hematogenous spread of virulent pathogen may disturb structural integrity and results in infection (1). Several confounding factors may influence the inflammatory process of OM leading to diagnostic difficulties and treatment delays. Due to the marked variability in osteomyelitis presentation and treatment, many researchers tried to investigate disease pathogenesis and introduce a controlled approach to active management. However, the primary focus of most of the published reports was a collection of infection-related parameters: haematological, radiological, histology or bacterial culture (2). Some reports focused on the process of bone destruction due to immune system activation. However, there is limited emphasis on biofilm formation and pathogen-induced bone destruction (3). Most causative pathogens can adhere to and grow on the surface of bone, joints and prosthesis causing bone resorptions. The pathophysiology of bacterium-induced bone resorption has not been identified. However, reports have suggested that pathogens such as Staphylococcus aureus express an array of cell surface and soluble molecules (e.g. acids and proteases) that have the potential to promote bone destruction at the infection site (4). These molecules can either induce immune system activation or direct bone resorption due to their osteolytic properties. Published reports on pathogen biofilm thus far have focused on indirect bone resorption mediated by host cells and factors secondary to immune system activation (3, 5, 6). However, direct bone resorption due to biofilm pathogen excretions has not been adequately studied yet. Therefore, we planned to investigate the effect of biofilm pathogen in ex-vivo human bones in the absence of the .
Frontiers in Microbiology
Prosthesis and joint infections are an important threat in public health, especially due to the development of bacterial biofilms and their high resistance to antimicrobials. Biofilmassociated infections increase mortality and morbidity rates as well as hospitalization costs. Prevention is the best strategy for this serious issue, so there is an urgent need to understand the signals that could induce irreversible bacterial adhesion on a prosthesis. In this context, we investigated the influence of the bone environment on surface adhesion by a methicillin-susceptible Staphylococcus aureus strain. Using static and dynamic biofilm models, we tested various bone environment factors and showed that the presence of Mg 2+ , lack of oxygen, and starvation each increased bacterial adhesion. It was observed that human osteoblast-like cell culture supernatants, which contain secreted components that would be found in the bone environment, increased bacterial adhesion capacity by 2-fold (p = 0.015) compared to the medium control. Moreover, supernatants from osteoblast-like cells stimulated with TNF-α to mimic inflammatory conditions increased bacterial adhesion by almost 5-fold (p = 0.003) without impacting on the overall biomass. Interestingly, the effect of osteoblast-like cell supernatants on bacterial adhesion could be counteracted by the activity of synthetic antibiofilm peptides. Overall, the results of this study demonstrate that factors within the bone environment and products of osteoblast-like cells directly influence S. aureus adhesion and could contribute to biofilm initiation on bone and/or prosthetics implants.
Staphylococcus aureus Strain-Dependent Biofilm Formation in Bone-Like Environment
Frontiers in Microbiology, 2021
Staphylococcus aureus species is an important threat for hospital healthcare because of frequent colonization of indwelling medical devices such as bone and joint prostheses through biofilm formations, leading to therapeutic failure. Furthermore, bacteria within biofilm are less sensitive to the host immune system responses and to potential antibiotic treatments. We suggested that the periprosthetic bone environment is stressful for bacteria, influencing biofilm development. To provide insights into S. aureus biofilm properties of three strains [including one methicillin-resistant S. aureus (MRSA)] under this specific environment, we assessed several parameters related to bone conditions and expected to affect biofilm characteristics. We reported that the three strains harbored different behaviors in response to the lack of oxygen, casamino acids and glucose starvation, and high concentration of magnesium. Each strain presented different biofilm biomass and live adherent cells propo...
2020
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacteria species, Staphylococcus aureus showed ability to interact and infect osteoblasts causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, also due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g. best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, so far the best ...
Biomolecules, 2021
Staphylococcus aureus is a Gram-positive bacterium responsible for a variety of mild to life-threatening infections including bone infections such as osteomyelitis. This bacterium is able to invade and persist within non-professional phagocytic cells such as osteoblasts. In the present study, four different S. aureus strains, namely, 2SA-ST239-III (ST239), 5SA-ST5-II (ST5), 10SA-ST228-I (ST228), and 14SA-ST22-IVh (ST22), were tested for their ability to modulate cell viability in MG-63 osteoblast-like cells following successful invasion and persistence. Methicillin-sensitive S. aureus (MSSA) ATCC-12598-ST30 (ST30) was used as control strain. Despite being proven that ST30, ST239, and ST22 have a similar ability to internalize and persist in MG-63 osteoblast-like cells under our experimental conditions, we demonstrated that the observed decrease in cell viability was due to the different behavior of the considered strains, rather than the number of intracellular bacteria. We focused ...
J Infect Dis, 2014
Background. Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored.
Staphylococcus aureus capsular material promotes osteoclast formation
Injury, 2006
1 Osteomyelitis, which is most frequently due to infection by Staphylococcus aureus, commonly causes bone destruction. S. aureus is known to secrete a number of surface-associated proteins that are potent stimulators of bone resorption. The precise cellular and humoral mechanisms that mediate this stimulatory effect are uncertain. In this study, we have determined whether osteoclast formation and resorption is directly promoted by surface-associated proteins. Surface-associated material (SAM) obtained from a 24-hour culture of S. aureus was added to cultures of mouse and human monocytes. Human monocyte cultures were incubated in the presence and absence of a soluble receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony stimulating factor (M-CSF). In cultures where M-CSF, RANKL, and SAM were added together, osteoclast formation did not exceed that seen in cultures with M-CSF and RANKL. In keeping with this finding, SAM did not increase osteoclast formation and resorption when mouse monocytes were cocultured with RANKL-expressing osteoblasts. In the absence of RANKL, however, SAM was capable of inducing osteoclast formation in cultures of human monocytes. This finding was evidenced by the generation of vitronectin receptor and tartrate-resistant acid phosphatasepositive multinucleated cells that were capable of lacunar resorption. Inhibitors of RANKL-dependent (RANK:Fc, OPG) and RANKL-independent (anti-TNF-α, gp130, IL-8, TGF-β) osteoclast formation did not inhibit SAM-induced osteoclast formation. SAM did not stimulate mature osteoclast resorption activity. These findings indicate that RANKL, which is present in the circulation as a soluble factor, does not play a role in osteoclast formation in the presence of S. aureus SAM and that S. aureus SAM contains a soluble factor that promotes osteoclast formation by a RANKL-independent mechanism.
Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis
Frontiers in Cellular and Infection Microbiology, 2015
Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the overproduction of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.
Frontiers in microbiology, 2016
Implicated in more than 60% of bone and joint infections (BJIs), Staphylococci have a particular tropism for osteoarticular tissue and lead to difficult-to-treat clinical infections. To date, Staphylococcus aureus internalization in non-professional phagocytic cells (NPPCs) is a well-explored virulence mechanism involved in BJI chronicity. Conversely, the pathophysiological pathways associated with Staphylococcus non-aureus (SNA) BJIs have scarcely been studied despite their high prevalence. In this study, 15 reference strains from 15 different SNA species were compared in terms of (i) adhesion to human fibronectin based on adhesion microplate assays and (ii) internalization ability, intracellular persistence and cytotoxicity based on an in vitro infection model using human osteoblasts. Compared to S. aureus, S. pseudintermedius was the only species that significantly adhered to human fibronectin. This species was also associated with high (even superior to S. aureus) internalizatio...