Phytocyanin-encoding genes confer enhanced ozone tolerance in Arabidopsis thaliana (original) (raw)

Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants

Plant, Cell & Environment, 2008

Genetically tractable model plants offer the possibility of defining the plant O3 response at the molecular level. To this end, we have isolated a collection of ozone (O3)-sensitive mutants of Arabidopsis thaliana. Mutant phenotypes and genetics were characterized. Additionally, parameters associated with O3 sensitivity were analysed, including stomatal conductance, sensitivity to and accumulation of reactive oxygen species, antioxidants, stress gene-expression and the accumulation of stress hormones. Each mutant has a unique phenotypic profile, with O3 sensitivity caused by a unique set of alterations in these systems. O3 sensitivity in these mutants is not caused by gross deficiencies in the antioxidant pathways tested here. The rcd3 mutant exhibits misregulated stomata. All mutants exhibited changes in stress hormones consistent with the known hormonal roles in defence and cell death regulation. One mutant, dubbed re-8, is an allele of the classic leaf development mutant reticulata and exhibits phenotypes dependent on light conditions. This study shows that O3 sensitivity can be determined by deficiencies in multiple interacting plant systems and provides genetic evidence linking these systems.

Ozone responses in Arabidopsis: beyond stomatal conductance

Plant Physiology

Tropospheric ozone (O3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting research of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O3. In this study, we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological mechanisms underlying O3 sensitivity. A key parameter in models for O3 damage is stomatal uptake. Here we show that the extent of O3 damage in the sensitive Arabidopsis accession Shahdara (Sha) does not correspond with O3 uptake, pointing toward stomata-independent mechanisms for the development of O3 damage. We compared tolerant (Col-0) versus sensitive accessions (Sha, Cvi-0) in assays related to photosynthesis, cell death, antioxidants, and transcriptional regulation. Acute O3 exposure increased cell death, development of lesions in the leaves, and decreased photosynthesis in sensitive accessions. In both Sha and Cvi...

Differential responses of G-protein Arabidopsis thaliana mutants to ozone

New Phytologist, 2004

Ground-level ozone (O 3 ) curtails agricultural production in many regions worldwide. However, the etiology of O 3 toxicity remains unclear. Activated oxygen species appear to inflict biochemical lesions and propagate defense responses that compound plant injury. Because some plant defense responses involve membranedelimited GTPases (G proteins), we evaluated the O 3 sensitivity of Arabidopsis mutants altered in the heterotrimeric G-protein pathway.

Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana

Plant, Cell and Environment, 2006

We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis . Temporal patterns of ROS following a 6 h exposure to 300 nL L -1 of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Downregulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death.

Signalling and cell death in ozone-exposed plants

Plant Cell and Environment, 2005

Arabidopsis mutants and sensitive and tolerant pairs in several other species have elucidated the molecular basis of plant ozone sensitivity and ozone lesion development. They have indicated an important role for hormonal signalling in determining the outcome of ozone challenge at the cellular level. The reactive oxygen species (ROS) from ozone degradation can cause either direct necrotic damage or induce the process of programmed cell death. Perception of ozone or ROS from its degradation in the apoplast activates several signal transduction pathways that regulate the responses of the cells to the increased oxidative load. Plant hormones salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in determining the duration and extent of ozone-induced cell death and its propagation. Salicylic acid is required for the programmed cell death, ethylene promotes endogenous ROS formation and lesion propagation, and jasmonic acid is involved in limiting the lesion spreading. Abscisic acid is most likely involved through the regulation of stomata and thus is expected to affect lesion initiation. The roles and interactions of perception of ozone, the immediate downstream responses, hormone biosynthesis and signalling during ozone lesion initiation and formation are reviewed.

Different Signaling and Cell Death Roles of Heterotrimeric G Protein α and β Subunits in the Arabidopsis Oxidative Stress Response to Ozone

The Plant Cell, 2005

Arabidopsis thaliana plants with null mutations in the genes encoding the α and β subunits of the single heterotrimeric G protein are less and more sensitive, respectively, to O3 damage than wild-type Columbia-0 plants. The first peak of the bimodal oxidative burst elicited by O3 in wild-type plants is almost entirely missing in both mutants. The late peak is normal in plants lacking the Gβ protein but missing in plants lacking the Gα protein. Endogenous reactive oxygen species (ROS) are first detectable in chloroplasts of leaf epidermal guard cells. ROS production in adjacent cells is triggered by extracellular ROS signals produced by guard cell membrane-associated NADPH oxidases encoded by the AtrbohD and AtrbohF genes. The late, tissue damage–associated component of the oxidative burst requires only the Gα protein and arises from multiple cellular sources. The early component of the oxidative burst, arising primarily from chloroplasts, requires signaling through the heterotrimer ...

A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant

Physiologia Plantarum, 2007

To follow stomatal responses to ozone (O3) in different Arabidopsis lines, we constructed a rapid-response O3 exposure/gas-exchange measurement device consisting of eight through-flow whole-rosette cuvettes. To separate rosette from roots and growth substrate, plant is grown through an agar-filled hole in a polished glass plate fixed on the pot. Following insertion of the plant, the plate forms air-tight bottom surface of the cuvette; thus the rosette is enclosed without touching it during any phase of the insertion of the plant to the cuvette. The device allows monitoring rapid responses in the stomatal function. For example, an acute exposure to 150 ppb O3 decreased stomatal conductance to 60–70% of its initial value within 9–12 min. Thereafter, the conductance regained its preexposure value within further 30–40 min in spite of the continuing O3 exposure. The transient decrease was absent in the abscisic acid-insensitive mutant abi2 defective in a class 2C protein phosphatase. This provides an in vivo confirmation that the early transient decrease in stomatal conductance is not a result of physical damage by the reactive oxygen species (ROS) formed from O3 breakdown but reflects the biological action of ROS, transduced through a signalling cascade. Thus, the apparatus will be helpful in specifying complex molecular and genetic interactions in rapid responses in guard cells in vivo.

Disruption of a Gene Encoding C4-Dicarboxylate Transporter-Like Protein Increases Ozone Sensitivity Through Deregulation of the Stomatal Response in Arabidopsis thaliana

Plant and Cell Physiology, 2008

To understand better the plant response to ozone, we isolated and characterized an ozone-sensitive (ozs1) mutant strain from a set of T-DNA-tagged Arabidopsis thaliana ecotype Columbia. The mutant plants show enhanced sensitivity to ozone, desiccation and sulfur dioxide, but have normal sensitivity to hydrogen peroxide, low temperature and high light levels. The T-DNA was inserted at a single locus which is linked to ozone sensitivity. Identification of the genomic sequences flanking the T-DNA insertion revealed disruption of a gene encoding a transporter-like protein of the tellurite resistance/C 4 -dicarboxylate transporter family. Plants with either of two different T-DNA insertions in this gene were also sensitive to ozone, and these plants failed to complement ozs1. Transpiration levels, stomatal conductance levels and the size of stomatal apertures were greater in ozs1 mutant plants than in the wild type. The stomatal apertures of ozs1 mutant plants responded to light fluctuations but were always larger than those of the wild-type plants under the same conditions. The stomata of the mutant and wild-type plants responded similarly to stimuli such as light, abscisic acid, high concentrations of carbon dioxide and ozone. These results suggest that OZS1 helps to close stomata, being not involved in the responses to these signals.

Alterations of the biochemical pathways of plants by the air pollutant ozone: which are the true gauges of injury?

TheScientificWorldJournal, 2007

Plant strategies to survive ozone stress include exclusion or tolerance of ozone. If these processes fail, past observations of ozone injury have indicated many physiological and metabolic changes then occur; most of these changes are likely to have been initiated at the level of gene expression, suggesting signal transduction. In the last decade considerable understanding of the biochemical process within plants has been developed. Currently there are several hypotheses regarding a response of plants to ozone fumigation: [1] membrane dysfunction and alteration of purpose; [2] stress ethylene interactions; [3] impairment of photosynthesis via changes in Rubisco levels and the guard cells so that the stomata do not track correctly the environment; [4] antioxidant protection through metabolites and enzyme systems to reduce the oxidant load; and [5] general impairment or disruption of metabolic pathways. Many believe that free radicals and other oxidative products, formed in plant leav...

The role of phytohormone signaling in ozone-induced cell death in plants

Plant Signaling & Behavior, 2008

Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.