Rapid Diagnosis of Ebola Hemorrhagic Fever by Reverse Transcription-PCR in an Outbreak Setting and Assessment of Patient Viral Load as a Predictor of Outcome (original) (raw)

Evaluation of a point-of-care blood test for identification of Ebola virus disease at Ebola holding units, Western Area, Sierra Leone, January to February 2015

Eurosurveillance, 2015

Current Ebola virus disease (EVD) diagnosis relies on reverse transcription-PCR (RT-PCR) technology, requiring skilled laboratory personnel and technical infrastructure. Lack of laboratory diagnostic capacity has led to diagnostic delays in the current West African EVD outbreak of 2014 and 2015, compromising outbreak control. We evaluated the diagnostic accuracy of the EVD bedside rapid diagnostic antigen test (RDT) developed by the United Kingdom's Defence Science and Technology Laboratory, compared with Ebola virus RT-PCR, in an operational setting for EVD diagnosis of suspected cases admitted to Ebola holding units in the Western Area of Sierra Leone. From 22 January to 16 February 2015, 138 participants were enrolled. EVD prevalence was 11.5%. All EVD cases were identified by a positive RDT with a test line score of 6 or more, giving a sensitivity of 100% (95% confidence interval (CI): 78.2-100). The corresponding specificity was high (96.6%, 95% CI: 91.3-99.1). The positive and negative predictive values for the population prevalence were 79.0% (95% CI: 54.4-93.8) and 100% (95% CI: 96.7-100), respectively. These results, if confirmed in a larger study, suggest that this RDT could be used as a 'rule-out' screening test for EVD to improve rapid case identification and resource allocation.

Laboratory Diagnosis of Ebola Hemorrhagic Fever during an Outbreak in Yambio, Sudan, 2004

The Journal of Infectious Diseases, 2007

Yambio county, southern Sudan. Blood samples were collected from a total of 36 patients with suspected EHF and were tested by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G and M antibodies, antigen ELISA, and reverse-transcription polymerase chain reaction (PCR) of a segment of the Ebolavirus (EBOV) polymerase gene. A total of 13 patients were confirmed to be infected with EBOV. In addition, 4 fatal cases were classified as probable cases, because no samples were collected. Another 12 patients were confirmed to have acute measles infection during the same period that EBOV was circulating. Genetic analysis of PCRpositive samples indicated that the virus was similar to but distinct from Sudan EBOV Maleo 1979. In response, case management, social mobilization, and follow-up of contacts were set up as means of surveillance. The outbreak was declared to be over on 7 August 2004.

Serological Investigation of Laboratory-Confirmed and Suspected Ebola Virus Disease Patients During the Late Phase of the Ebola Outbreak in Sierra Leone

Virologica Sinica, 2018

This study aimed to investigate the serological characteristics of Ebola virus (EBOV) infection during the late phase of the Ebola outbreak in Sierra Leone. In total, 877 blood samples from 694 suspected Ebola virus disease (EVD) cases assessed from March to December 2015, were analyzed via real-time reverse transcription polymerase chain reaction (RT-PCR) for viral RNA and enzyme-linked immunosorbent assay (ELISA) and Luminex to detect antibodies against EBOV. Viral load and EBOV-specific IgM/IgG titers displayed a declining trend during March to December 2015. Viral RNA load decreased rapidly at earlier stages after disease onset, while EBOV-specific IgM and IgG still persisted in 58.1% (18/31) and 93.5% (29/31) of the confirmed EVD patients and in 3.8% (25/663) and 17.8% (118/663) of the RNA-negative suspected patients in the later phase, respectively. Dynamic analysis of longitudinally collected samples from eight EVD patients revealed typically reversed trends of declining vira...

Biosafety level-2 laboratory diagnosis of Zaire Ebola virus disease imported from Liberia to Nigeria

African Journal of Laboratory Medicine, 2016

Introduction: Global travel is an efficient route of transmission for highly infectious pathogens and increases the chances of such pathogens moving from high disease-endemic areas to new regions. We describe the rapid and safe identification of the first imported case of Ebola virus disease in a traveler to Lagos, Nigeria, using conventional reverse transcription polymerase chain reaction (RT-PCR) in a biosafety level (BSL)-2 facility.Case presentation: On 20 July 2014, a traveler arrived from Liberia at Lagos International Airport and was admitted to a private hospital in Lagos, with clinical suspicion of Ebola virus disease.Methodology and Outcome: Blood and urine specimens were collected, transported to the Virology Unit Laboratory at the College of Medicine, University of Lagos, and processed under stringent biosafety conditions for viral RNA extraction. RT-PCR was set-up to query the Ebola, Lassa and Dengue fever viruses. Amplicons for pan-filoviruses were detected as 300 bp b...

Molecular Diagnostics of Ebola Patient Samples by Institut Pasteur de Dakar Mobile Laboratory in Guinea 2014–2016

Re-Emerging Filovirus Diseases [Working Title]

As part of the laboratory response to the Ebola virus outbreak in Guinea, the Institut Pasteur de Dakar mobile laboratory (IPD-ML) was set up in Donka hospital from 2014 to 2016. EBOV suspected samples collected at Ebola Treatment Centers (ETC) and from community deaths were sent daily to IPD-ML. Analysis was performed using dried oligonucleotide mixes for real-time RT-PCR designed for field diagnostic. From March 2014 to May 2015, a total of 6055 patient samples suspected for EBOV collected from seven regions of Guinea were tested by realtime RT-PCR. These patients' clinical included serum samples (n = 2537 samples) and swabs (n = 3518 samples) with positivity rates of 36.74 and 6.88% respectively. Females were significantly more affected than males with positivity rates of 22.39 and 17.22% respectively (p-value = 5.721e-7). All age groups were exposed to the virus with significant difference (p-value <= 2.2e-16). The IPD-ML contributed significantly to the surveillance and patient management during the EBOV outbreak in Guinea. Furthermore, dried reagents adapted for field diagnostic of EVD suspect cases could be useful for future outbreak preparedness and response.

Mortality among PCR negative admitted Ebola suspects during the 2014/15 outbreak in Conakry, Guinea: A retrospective cohort study

PloS one, 2017

Non-cases are suspect Ebola Virus Disease (EVD) cases testing negative by EVD RT-PCR after admission to an Ebola Treatment Centre (ETC). Admitting non-cases to an ETC prompts concerns on case- and workload in the ETC, risk for nosocomial EVD infection, and delays in diagnosis and disease-specific treatment. We retrospectively analysed characteristics, outcomes and determinants of death of EVD cases and non-cases admitted to the Conakry ETC in Guinea between 03/2014 and 09/2015. Of the 2362 admitted suspects who underwent full confirmatory PCR testing, 1540 (65.2%) were non-cases; among them 727 needed repeated confirmatory PCR testing resulting in 2.5 days (average) in the ETC isolation ward. Twenty-one patients tested positive on the repeat test, most in a period of flawed sampling for the initial test and none after introduction of PCR confirmation with geneXpert. No readmissions following nosocomial EVD infection were recorded. No combination of symptoms yielded acceptable sensit...

Clinical features of patients isolated for suspected Ebola virus disease at Connaught Hospital, Freetown, Sierra Leone: a retrospective cohort study

The Lancet Infectious Diseases, 2015

Background The size of the west African Ebola virus disease outbreak led to the urgent establishment of Ebola holding unit facilities for isolation and diagnostic testing of patients with suspected Ebola virus disease. Following the onset of the outbreak in Sierra Leone, patients presenting to Connaught Hospital in Freetown were screened for suspected Ebola virus disease on arrival and, if necessary, were admitted to the on-site Ebola holding unit. Since demand for beds in this unit greatly exceeded capacity, we aimed to improve the selection of patients with suspected Ebola virus disease for admission by identifying presenting clinical characteristics that were predictive of a confi rmed diagnosis.

Development, Evaluation, and Integration of a Quantitative Reverse-Transcription Polymerase Chain Reaction Diagnostic Test for Ebola Virus on a Molecular Diagnostics Platform

Journal of Infectious Diseases, 2016

Background. The 2013-2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). Methods. The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus. Results. The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%. Conclusions. The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola.

Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Uganda

PLOS Pathogens, 2008

Over the past 30 years, Zaire and Sudan ebolaviruses have been responsible for large hemorrhagic fever (HF) outbreaks with case fatalities ranging from 53% to 90%, while a third species, Côte d'Ivoire ebolavirus, caused a single non-fatal HF case. In November 2007, HF cases were reported in Bundibugyo District, Western Uganda. Laboratory investigation of the initial 29 suspect-case blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed randomprimed pyrosequencing approach quickly identified this to be an Ebola HF outbreak associated with a newly discovered ebolavirus species (Bundibugyo ebolavirus) distantly related to the Côte d'Ivoire ebolavirus found in western Africa. Due to the sequence divergence of this new virus relative to all previously recognized ebolaviruses, these findings have important implications for design of future diagnostic assays to monitor Ebola HF disease in humans and animals, and ongoing efforts to develop effective antivirals and vaccines.