A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila (original) (raw)
Abstract
Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the evolution of new cellular functions. We identified TPB2, a homolog of the piggyBac transposase gene that is required for programmed DNA deletion in Tetrahymena. TPB2 was expressed exclusively during the time of DNA excision, and its encoded protein Tpb2p was localized in DNA elimination heterochromatin structures. Notably, silencing of TPB2 by RNAi disrupts the final assembly of these heterochromatin structures and prevents DNA deletion to occur. In vitro studies revealed that Tpb2p is an endonuclease that produces double-strand breaks with four-base 5' protruding ends, similar to the ends generated during DNA deletion. These findings suggest that Tpb2p plays a key role in the assembly of specialized DNA elimination chromatin architectures and is likely responsible for the DNA cleavage step of programmed DNA deletion.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (45)
- Agrawal, A., Eastman, Q. M., and Schatz, D. G. (1998). Transposition medi- ated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744 -751.
- Aronica, L., Bednenko, J., Noto, T., DeSouza, L. V., Siu, K. W., Loidl, J., Pearlman, R. E., Gorovsky, M. A., and Mochizuki, K. (2008). Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev. 22, 2228 -2241.
- Austerberry, C. F., Allis, C. D., and Yao, M. C. (1984). Specific DNA rear- rangements in synchronously developing nuclei of Tetrahymena. Proc. Natl. Acad. Sci. USA 81, 7383-7387.
- Baudry, C., Malinsky, S., Restituito, M., Kapusta, A., Rosa, S., Meyer, E., and Betermier, M. (2009). PiggyMac, a domesticated piggyBac transposase in- volved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 23, 2478 -2483.
- Borst, P., and Greaves, D. R. (1987). Programmed gene rearrangements alter- ing gene expression. Science 235, 658 -667.
- Cary, L. C., Goebel, M., Corsaro, B. G., Wang, H. G., Rosen, E., and Fraser, M. J. (1989). Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172, 156 -169.
- Casola, C., Hucks, D., and Feschotte, C. (2008). Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol. 25, 29 -41.
- Chadee, D. N., Hendzel, M. J., Tylipski, C. P., Allis, C. D., Bazett-Jones, D. P., Wright, J. A., and Davie, J. R. (1999). Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibro- blasts. J. Biol. Chem. 274, 24914 -24920.
- Chalker, D. L. (2008). Dynamic nuclear reorganization during genome remod- eling of Tetrahymena. Biochim. Biophys. Acta 1783, 2130 -2136.
- Chalker, D. L., and Yao, M. C. (1996). Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahy- mena thermophila with germ line-limited DNA. Mol. Cell. Biol. 16, 3658 -3667.
- Chalker, D. L., and Yao, M. C. (2001). Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Genes Dev. 15, 1287-1298.
- Coyne, R. S., Chalker, D. L., and Yao, M. C. (1996). Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu. Rev. Genet. 30, 557-578.
- Coyne, R. S., Nikiforov, M. A., Smothers, J. F., Allis, C. D., and Yao, M. C. (1999). Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol. Cell 4, 865-872.
- Dedon, P. C., Soults, J. A., Allis, C. D., and Gorovsky, M. A. (1991). Formal- dehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol. Cell. Biol. 11, 1729 -1733.
- Doak, T. G., Doerder, F. P., Jahn, C. L., and Herrick, G. (1994). A proposed superfamily of transposase genes: transposon-like elements in ciliated proto- zoa and a common "D35E" motif. Proc. Natl. Acad. Sci. USA 91, 942-946.
- Elick, T. A., Bauser, C. A., and Fraser, M. J. (1996). Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98, 33-41.
- Fraser, M. J., Ciszczon, T., Elick, T., and Bauser, C. (1996). Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5, 141-151.
- Godiska, R., and Yao, M. C. (1990). A programmed site-specific DNA rear- rangement in Tetrahymena thermophila requires flanking polypurine tracts. Cell 61, 1237-1246.
- Howard-Till, R. A., and Yao, M. C. (2006). Induction of gene silencing by hairpin RNA expression in Tetrahymena thermophila reveals a second small RNA pathway. Mol. Cell. Biol. 26, 8731-8742.
- Ikeda, R., Kokubu, C., Yusa, K., Keng, V. W., Horie, K., and Takeda, J. (2007). Sleeping beauty transposase has an affinity for heterochromatin conforma- tion. Mol. Cell. Biol. 27, 1665-1676.
- Kapitonov, V. V., and Jurka, J. (2005). RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181.
- Klobutcher, L. A., and Herrick, G. (1997). Developmental genome reorgani- zation in ciliated protozoa: the transposon link. Prog. Nucleic Acid Res. Mol. Biol. 56, 1-62.
- Liu, Y., Taverna, S. D., Muratore, T. L., Shabanowitz, J., Hunt, D. F., and Allis, C. D. (2007). RNAi-dependent H3K27 methylation is required for heterochro- matin formation and DNA elimination in Tetrahymena. Genes Dev. 21, 1530 - 1545.
- Madireddi, M. T., Coyne, R. S., Smothers, J. F., Mickey, K. M., Yao, M. C., and Allis, C. D. (1996). Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 87, 75-84.
- Madireddi, M. T., Davis, M. C., and Allis, C. D. (1994). Identification of a novel polypeptide involved in the formation of DNA-containing vesicles during macronuclear development in Tetrahymena. Dev. Biol. 165, 418 -431.
- Malone, C. D., Anderson, A. M., Motl, J. A., Rexer, C. H., and Chalker, D. L. (2005). Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetra- hymena thermophila. Mol. Cell. Biol. 25, 9151-9164.
- Matthews, A. G., et al. (2007). RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106 -1110.
- Mochizuki, K., Fine, N. A., Fujisawa, T., and Gorovsky, M. A. (2002). Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689 -699.
- Mochizuki, K., and Gorovsky, M. A. (2005). A Dicer-like protein in Tetrahy- mena has distinct functions in genome rearrangement, chromosome segrega- tion, and meiotic prophase. Genes Dev. 19, 77-89.
- Nikiforov, M. A., Gorovsky, M. A., and Allis, C. D. (2000). A novel chromo- domain protein, pdd3p, associates with internal eliminated sequences during macronuclear development in Tetrahymena thermophila. Mol. Cell. Biol. 20, 4128 -4134.
- Nikiforov, M. A., Smothers, J. F., Gorovsky, M. A., and Allis, C. D. (1999). Excision of micronuclear-specific DNA requires parental expression of pdd2p and occurs independently from DNA replication in Tetrahymena thermophila. Genes Dev. 13, 2852-2862.
- Nowacki, M., Higgins, B. P., Maquilan, G. M., Swart, E. C., Doak, T. G., and Landweber, L. F. (2009). A functional role for transposases in a large eukary- otic genome. Science 324, 935-938.
- Rexer, C. H., and Chalker, D. L. (2007). Lia1p, a novel protein required during nuclear differentiation for genome-wide DNA rearrangements in Tetrahymena thermophila. Eukaryot. Cell 6, 1320 -1329.
- Sarkar, A., Sim, C., Hong, Y. S., Hogan, J. R., Fraser, M. J., Robertson, H. M., and Collins, F. H. (2003). Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Mol. Genet. Genom. 270, 173-180.
- Saveliev, S. V., and Cox, M. M. (1995). Transient DNA breaks associated with programmed genomic deletion events in conjugating cells of Tetrahymena thermophila. Genes Dev. 9, 248 -255.
- Saveliev, S. V., and Cox, M. M. (1996). Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J. 15, 2858 -2869.
- Smit, A. F., and Riggs, A. D. (1996). Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93, 1443-1448.
- Smith, J. J., Antonacci, F., Eichler, E. E., and Amemiya, C. T. (2009). Pro- grammed loss of millions of base pairs from a vertebrate genome. Proc. Natl. Acad. Sci. USA 106, 11212-11217.
- Taverna, S. D., Coyne, R. S., and Allis, C. D. (2002). Methylation of histone h3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110, 701-711.
- Volff, J. N. (2006). Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28, 913-922.
- Yao, M. C. (1996). Programmed DNA deletions in Tetrahymena: mechanisms and implications. Trends Genet. 12, 26 -30.
- Yao, M. C., and Chao, J. L. (2005). RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu. Rev. Genet. 39, 537-559.
- Yao, M. C., Fuller, P., and Xi, X. (2003). Programmed DNA deletion as an RNA-guided system of genome defense. Science 300, 1581-1584.
- Yu, G. L., and Blackburn, E. H. (1989). Transformation of Tetrahymena ther- mophila with a mutated circular ribosomal DNA plasmid vector. Proc. Natl. Acad. Sci. USA 86, 8487-8491.
- Yusa, K., Takeda, J., and Horie, K. (2004). Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin forma- tion. Mol. Cell. Biol. 24, 4004 -4018.