Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs (original) (raw)
Chinese Physics B, 2020
Abstract
We investigate the instability of threshold voltage in D-mode MIS-HEMT with in-situ SiN as gate dielectric under different negative gate stresses. The complex non-monotonic evolution of threshold voltage under the negative stress and during the recovery process is induced by the combination effect of two mechanisms. The effect of trapping behavior of interface state at SiN/AlGaN interface and the effect of zener traps in AlGaN barrier layer on the threshold voltage instability are opposite to each other. The threshold voltage shifts negatively under the negative stress due to the detrapping of the electrons at SiN/AlGaN interface, and shifts positively due to zener trapping in AlGaN barrier layer. As the stress is removed, the threshold voltage shifts positively for the retrapping of interface states and negatively for the thermal detrapping in AlGaN. However, it is the trapping behavior in the AlGaN rather than the interface state that results in the change of transconductance in t...
Jie Zhu hasn't uploaded this paper.
Let Jie know you want this paper to be uploaded.
Ask for this paper to be uploaded.