Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience (original) (raw)

High Individuality of Respiratory Bacterial Communities in a Large Cohort of Adult Cystic Fibrosis Patients under Continuous Antibiotic Treatment

PLOS ONE, 2015

Background Routine clinical diagnostics of CF patients focus only on a restricted set of well-known pathogenic species. Recent molecular studies suggest that infections could be polymicrobial with many bacteria not detected by culture-based diagnostics. Methodology and Principal Findings A large cohort of 56 adults with continuous antibiotic treatment was studied and different microbial diagnostic methods were compared, including culture-independent and culturebased bacterial diagnostics. A total of 72 sputum samples including longitudinal observations was analysed by 16S rRNA gene sequence comparison. Prevalence of known pathogens was highly similar among all methods but the vast spectrum of bacteria associated with CF was only revealed by culture-independent techniques. The sequence comparison enabled confident determination of the bacterial community composition and revealed a high diversity and individuality in the communities across the cohort. Results of microbiological analyses were further compared with individual host factors, such as age, lung function and CFTR genotype. No statistical relationship between these factors and the diversity of the entire community or single bacterial species could be identified. However, patients with non-ΔF508 mutations in the CFTR gene often had low abundances of Pseudomonas aeruginosa. Persistence of specific bacteria in some communities was demonstrated by longitudinal analyses of 13 patients indicating a potential clinical relevance of anaerobic bacteria, such as Fusobacterium nucleatum and Streptococcus millerii.

Taxonomic variability over functional stability in the microbiome of Cystic Fibrosis patients chronically infected by Pseudomonas aeruginosa

2019

Although the cystic fibrosis (CF) lung microbiome has been characterized in several studies, little is still known about the functions harboured by those bacteria, and how they change with disease status and antibiotic treatment. The aim of this study was to investigate the taxonomic and functional temporal dynamics of airways microbiome in a cohort of CF patients. Multiple sputum samples were collected over 15 months from 22 patients with chronic P. aeruginosa infection, for a total of 79 samples. DNA extracted from samples was subjected to shotgun metagenomic sequencing allowing either strain-level taxonomic profiling and assessment of the functional metagenomic repertoire. High inter-patient taxonomic heterogeneity was found with short-term compositional changes during exacerbations and following antibiotic treatment. Each patient exhibited distinct sputum microbial communities at the taxonomic level, and strain-specific colonization of traditional CF pathogens, including P. aeruginosa, and emerging pathogens. Sputum microbiome was found to be extraordinarily resilient following antibiotic treatment, with rapid recovery of taxa and metagenome-associated gene functions. In particular, a large core set of genes, including antibiotic resistance genes, were shared across patients despite observed differences in clinical status or antibiotic treatment, and constantly detected in the lung microbiome of all subjects independently from known antibiotic exposure, suggesting an overall microbiome-associated functions stability despite taxonomic fluctuations of the communities. IMPORTANCE While the dynamics of CF sputum microbial composition were highly patientspecific, the overall sputum metagenome composition was stable, showing a high resilience along time and antibiotic exposure. The high degree of redundancy in the CF lung microbiome could testifies ecological aspects connected to the disease that were never considered so far, as the large core-set of genes shared between patients despite observed differences in clinical status or antibiotic

Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function

PloS one, 2015

Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD). Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversit...

Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation

Microbiome, 2013

Background: Cystic fibrosis (CF) is caused by inherited mutations in the cystic fibrosis transmembrane conductance regulator gene and results in a lung environment that is highly conducive to polymicrobial infection. Over a lifetime, decreasing bacterial diversity and the presence of Pseudomonas aeruginosa in the lung are correlated with worsening lung disease. However, to date, no change in community diversity, overall microbial load or individual microbes has been shown to correlate with the onset of an acute exacerbation in CF patients. We followed 17 adult CF patients throughout the course of clinical exacerbation, treatment and recovery, using deep sequencing and quantitative PCR to characterize spontaneously expectorated sputum samples Results: We identified approximately 170 bacterial genera, 12 of which accounted for over 90% of the total bacterial load across all patient samples. Genera abundant in any single patient sample tended to be detectable in most samples. We found that clinical stages could not be distinguished by absolute Pseudomonas aeruginosa load, absolute total bacterial load or the relative abundance of any individual genus detected, or community diversity. Instead, we found that the microbial structure of each patient's sputum microbiome was distinct and resilient to exacerbation and antibiotic treatment.

The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation

Microbiome, 2015

Recent work indicates that the airways of persons with cystic fibrosis (CF) typically harbor complex bacterial communities. However, the day-to-day stability of these communities is unknown. Further, airway community dynamics during the days corresponding to the onset of symptoms of respiratory exacerbation have not been studied. Using 16S rRNA amplicon sequencing of 95 daily sputum specimens collected from four adults with CF, we observed varying degrees of day-to-day stability in airway bacterial community structures during periods of clinical stability. Differences were observed between study subjects with respect to the degree of community changes at the onset of exacerbation. Decreases in the relative abundance of dominant taxa were observed in three subjects at exacerbation. We observed no relationship between total bacterial load and clinical status and detected no viruses by multiplex PCR. CF airway microbial communities are relatively stable during periods of clinical stabi...

Microbiota and Metabolite Profiling Reveal Specific Alterations in Bacterial Community Structure and Environment in the Cystic Fibrosis Airway during Exacerbation

PloS one, 2013

Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF) patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA-and RNA-based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.

Lung function and microbiota diversity in cystic fibrosis

Microbiome, 2020

BackgroundChronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung function could be considered a generalised pattern of CF lung microbiota and explored its potential as an informat...

Lung microbiota across age and disease stage in cystic fibrosis

Scientific Reports, 2015

Understanding the significance of bacterial species that colonize and persist in cystic fibrosis (CF) airways requires a detailed examination of bacterial community structure across a broad range of age and disease stage. We used 16S ribosomal RNA sequencing to characterize the lung microbiota in 269 CF patients spanning a 60 year age range, including 76 pediatric samples from patients of age 4-17, and a broad cross-section of disease status to identify features of bacterial community structure and their relationship to disease stage and age. The CF lung microbiota shows significant inter-individual variability in community structure, composition and diversity. The core microbiota consists of five genera-Streptococcus, Prevotella, Rothia, Veillonella and Actinomyces. CF-associated pathogens such as Pseudomonas, Burkholderia, Stenotrophomonas and Achromobacter are less prevalent than core genera, but have a strong tendency to dominate the bacterial community when present. Community diversity and lung function are greatest in patients less than 10 years of age and lower in older age groups, plateauing at approximately age 25. Lower community diversity correlates with worse lung function in a multivariate regression model. Infection by Pseudomonas correlates with age-associated trends in community diversity and lung function. Cystic fibrosis (CF) is characterized by recurrent airway infection, inflammation and progressive decline in lung function. Infection with key organisms such as Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) has been associated with the frequent exacerbations of airway dysfunction and progressive functional decline that are the hallmarks of the disease 1-3. Over the last decade, cross-sectional and longitudinal studies of bacterial taxa using culture-independent microbial detection methods such as terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequencing, have identified polymicrobial communities in the airways of CF patients that exceed the complexity captured by traditional culture 4-13. Significant heterogeneity in bacterial community composition has been demonstrated within groups of clinically similar patients 5-7. Although the abundance of individual taxa (such as Gemella spp. and the Streptococcus anginosus group), ecological diversity, and community stability are potentially associated with disease status 8,10,14 , no single static or dynamic metric or bacterial taxon has emerged that consistently explains the heterogeneity of disease within otherwise similar hosts. Culture-based methods have demonstrated the clinical significance of infection with pathogens such as P. aeruginosa. Molecular methods have demonstrated that not only their presence or absence, but also

Ecological Succession of Polymicrobial Communities in the Cystic Fibrosis Airways

mSystems

Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing.