Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants (original) (raw)

Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering

Biomaterials, 2008

In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a gelatin hydrogel, (3) microspheres embedded in a poly(propylene fumarate) (PPF) scaffold and (4) microspheres embedded in a PPF scaffold surrounded by a gelatin hydrogel. A fraction of the incorporated BMP-2 was radiolabeled with 125 I to determine its in vitro and in vivo release profiles. The release and bioactivity of BMP-2 were tested weekly over a period of 12 weeks in preosteoblast W20-17 cell line culture and in a rat subcutaneous implantation model. Outcome parameters for in vitro and in vivo bioactivities of the released BMP-2 were alkaline phosphatase (AP) induction and bone formation, respectively. The four implant types showed different in vitro release profiles over the 12-week period, which changed significantly upon implantation. The AP induction by BMP-2 released from gelatin implants showed a loss in bioactivity after 6 weeks in culture, while the BMP-2 released from the other implants continued to show bioactivity over the full 12-week period. Micro-CT and histological analysis of the delivery vehicles after 6 weeks of implantation showed significantly more bone in the microsphere/PPF scaffold composites (Implant 3, p < 0.02). After 12 weeks, the amount of newly formed bone in the microsphere/PPF scaffolds remained significantly higher than that in the gelatin and microsphere/gelatin hydrogels (p < 0.001), however, there was no statistical difference compared to the microsphere/PPF/gelatin composite. Overall, the results from this study show that BMP-2 could be incorporated into various bone tissue engineering composites for sustained release over a prolonged period of time with retention of bioactivity.

Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts

Small, 2009

Efficient delivery of growth or survival factors to cells is one of the most important long-term challenges of current cell-based tissue engineering strategies. The extracellular matrix acts as a reservoir for a number of growth factors through interactions with its components. In the matrix, growth factors are protected against circulating proteases and locally concentrated. Thus, the localized and long-lasting delivery of a matrix-bound recombinant human bone morphogenetic protein 2 (rhBMP-2) from a biomaterial surface would mimic in vivo conditions and increase BMP-2 efficiency by limiting its degradation. Herein, it is shown that crosslinked poly(L-lysine)/ hyaluronan (HA) layer-by-layer films can serve as a reservoir for rhBMP-2 delivery to myoblasts and induce their differentiation into osteoblasts in a dose-dependent manner. The amount of rhBMP-2 loaded in the films is controlled by varying the deposition conditions and the film thickness. Its local concentration in the film is increased up to %500-fold when compared to its initial solution concentration. Its adsorption on the films, as well as its diffusion within the films, is evidenced by microfluorimetry and confocal microscopy observations. A direct interaction of rhBMP-2 with HA is demonstrated by size-exclusion chromatography, which could be at the origin of the rhBMP-2 ''trapping'' in the film and of its low release from the films. The bioactivity of rhBMP-2-loaded films is due neither to film degradation nor to rhBMP-2 release. The rhBMP-2-containing films are extremely resistant and could sustain three successive culture sequences while remaining bioactive, thus confirming the important and protective effect of rhBMP-2 immobilization. These films may find applications in the local delivery of immobilized growth factors for tissue-engineered constructs and for metallic biomaterial surfaces, as they can be deposited on a wide range of substrates with different shapes, sizes, and composition.

Material-related effects of BMP2 delivery systems on bone regeneration

Acta Biomaterialia

Material-related effects of a brushite and a PLGA controlled release system loaded with two distinct doses of bone morphogenetic protein-2 (BMP-2) (3.5 and 17.5 lg), pre-encapsulated in poly(lactic-co-glycolic acid) (PLGA), were investigated in an intramedullary femur defect model in rabbits. The systems were characterized in vitro and in vivo over 12 weeks in terms of morphology, release kinetics, porosity, molecular weight, and composition using scanning electron microscopy, mercury porosimetry, radioactivity counting, X-ray diffractometry, differential scanning calorimetry, and gel permeation chromatography. During the experimental period the investigated systems underwent significant changes in vitro as well as in vivo. It should be stressed that the two in vitro release patterns were similar, however in vivo parallel profiles were observed with a higher burst effect for BMP-2 in the PLGA system. The PLGA system degraded and disintegrated significantly faster than the brushite system, which suffered slowly progressing external erosion and, additionally, material resorption by osteoclasts in vivo. The consequences of this were reflected in the degree of bone regeneration. Although a sustained delivery of BMP-2 was achieved with both systems, the brushite construct, independent of the loaded growth factor dose, failed to consistently induce defect repair, a result attributed to its slow resorption rate. In contrast, the PLGA system resulted in complete regeneration with mature trabecular bone formation 8 weeks after implantation.

The effect of a slow mode of BMP-2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds

Biomaterials, 2010

We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, EthisorbÔ, PLGA and Polyactive Ò ) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-platesupported discs of each polymer (n ¼ 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n ¼ 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r 2 ¼ 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r 2 ¼ 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play.

Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo

Journal of Controlled Release, 2015

A low dose of 1 μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(L-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70 days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4 weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short distance effect prevents adverse systemic side effects.

Biomimetic coatings for bone tissue engineering of critical-sized defects

Journal of The Royal Society Interface, 2010

The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing attention. Bone-inducing agents have been locally injected to stimulate the native bone-formation activity, but without much success. The reason is that these drugs must be delivered slowly and at a low concentration to be effective. This then mimics the natural method of cytokine release. For this purpose, a suitable vehicle was developed, the so-called biomimetic coating, which can be deposited on metal implants as well as on biomaterials. Materials that are currently used to fill bony defects cannot by themselves trigger bone formation. Therefore, biological functionalization of such materials by the biomimetic method resulted in a novel biomimetic coating onto different biomaterials. Bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic coating can be a solution for a large bone defect repair in the fields of dental implantology, maxillofacial surgery and orthopaedics. Here, we review the performance of the biomimetic coating both in vitro and in vivo.

Evaluation of BMP-2 tethered polyelectrolyte coatings on hydroxyapatite scaffolds in vivo

Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012

The goal of this in vivo study was to evaluate the osteoinductive and angio-inductive properties of a porous hydroxyapatite (HAp) scaffold with immobilized recombinant bone morphogenetic protein-2 (rhBMP-2) on the surface. It was hypothesized in this study that the use of a rhBMP-2 incorporated polyelectrolyte coating on the HAp scaffold would allow for controlled exposure of rhBMP-2 into the tissue and would provide a sound platform for tissue growth. The scaffolds were characterized for porosity and interconnectivity using pycnometry, scanning electron microscopy and micro-ct. These scaffolds were then divided into the following four groups: (a) HAp scaffold (n-HAp group), (b) rhBMP-2 physically adsorbed on HAp scaffold (HAp-BMP-2 Group), (c) polyelectrolyte coating on HAp scaffold without rhBMP-2 (HAp-PEI Scaffold Group), and (d) polyelectrolyte coating tethered with rhBMP-2 on HAp scaffold (HAp-PEI-BMP-2 Scaffold Group). Using 18 skeletally matured New Zealand white rabbits, these scaffolds were evaluated in a nonload bearing femoral condyle plug model. The negative controls for this study have defects that were left untreated and the positive controls have defects that were filled with autologous bone graft harvested from epsilateral iliac crest. Bone induction, vessel growth, and scaffold-bone contact were analyzed after 8-week implantation using micro-CT and histomorphometry. It was concluded from this study that the use of scaffold with an attached rhBMP-2 increased the vascularization around the implant when compared with the uncoated n-HAp scaffold, a necessary step of bone regeneration. The open-pore HAp scaffold was also concluded to provide a platform for tissue growth, drug loading, and tissue interaction.

Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects

Advanced Science, 2018

With an ageing population, >1 million fractures are expected to occur annually by 2050. [5] Thus, there is an urgent need to develop new bone repair therapies that are safe, cost-effective, and efficacious. Currently, therapeutic approaches for the treatment of nonunion fractures include growth factor (GF)-based treatments, [6,7] stem cell therapies, [7] and magnetic field treatments. [7,8] GFs, in particular bone morphogenetic proteins (BMPs), are commonly used in fracture treatments. However, they are not without limitations, including partial efficacy [9] ; uncontrolled and nonlocalized delivery, which can produce potentially harmful, nonspecific, systemic side effects [10-12] ; and high cost due to the large doses of GFs used. [9,13] BMP-2 has been used for over a decade in bone regenerative therapies, loaded into collagen sponges at high concentrations (1.5 mg mL −1). [14] Despite the US Food and Drug Administration (FDA) releasing a notification of the lifethreatening complications associated with the therapeutic use of high-dose BMP-2 for bone repair, including ectopic bone formation, neurological problems, and high risk of cancer, the use of GF therapies continues. [15] Nevertheless, new advanced technologies are being developed to replace existing GF-based treatments by exploiting the bioactive properties of materials. [16-22] Still, the translation of materials-based platforms from in vitro and in vivo lab testing through to clinical applications remains limited due to While new biomaterials for regenerative therapies are being reported in the literature, clinical translation is slow. Some existing regenerative approaches rely on high doses of growth factors, such as bone morphogenetic protein-2 (BMP-2) in bone regeneration, which can cause serious side effects. An ultralow-dose growth factor technology is described yielding high bioactivity based on a simple polymer, poly(ethyl acrylate) (PEA), and mechanisms to drive stem cell differentiation and bone regeneration in a critical-sized murine defect model with translation to a clinical veterinary setting are reported. This material-based technology triggers spontaneous fibronectin organization and stimulates growth factor signalling, enabling synergistic integrin and BMP-2 receptor activation in mesenchymal stem cells. To translate this technology, plasma-polymerized PEA is used on 2D and 3D substrates to enhance cell signalling in vitro, showing the complete healing of a critical-sized bone injury in mice in vivo. Efficacy is demonstrated in a Münsterländer dog with a nonhealing humerus fracture, establishing the clinical translation of advanced ultralow-dose growth factor treatment.

Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration

Journal of Materials Science: Materials in Medicine, 2010

The aim of this study was to develop 3-D tissue engineered constructs that mimic the in vivo conditions through a self-contained growth factor delivery system. A set of nanoparticles providing the release of BMP-2 initially followed by the release of BMP-7 were incorporated in poly(e-caprolactone) scaffolds with different 3-D architectures produced by 3-D plotting and wet spinning. The release patterns were: each growth factor alone, simultaneous, and sequential. The orientation of the fibers did not have a significant effect on the kinetics of release of the model protein BSA; but affected proliferation of bone marrow mesenchymal stem cells. Cell proliferation on random scaffolds was significantly higher compared to the oriented ones. Delivery of BMP-2 alone suppressed MSC proliferation and increased the ALP activity to a higher level than that with BMP-7 delivery. Proliferation rate was suppressed the most by the sequential delivery of the two growth factors from the random scaffold on which the ALP activity was the highest. Results indicated the distinct effect of scaffold architecture and the mode of growth factor delivery on the proliferation and osteogenic differentiation of MSCs, enabling us to design multifunctional scaffolds capable of controlling bone healing.