A Comparison of Half and Quarter Space Penetration into Granular Media (original) (raw)
Related papers
Observations of projectile penetration into a transparent soil
Mechanics Research Communications, 2015
In this study, a transparent sand surrogate was employed along with high-speed imagery to un-intrusively visualize the penetration of a spherical projectile into the center of a saturated granular target, representing angular sand, at speeds ranging between 60 and 150 m/sec. The transparent sand was made by saturating an angular granular fused quartz waste product with a matched refractive index pore fluid made of sucrose. A distinct zone of opacity was observed travelling ahead of the projectile. The opacity zone appears circular during initial penetration and transitions into the shape of an elongated cone in shots with higher initial velocities. Some healing was also observed with time and some increase in transparency was observed. Some of the opacity is attributed to dilatancy of the granular fused quartz during penetration, and healing is attributed to flow of pore fluid into the dilated zone.
Projectile penetration in granular material
SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2020
Penetration depth is the most important parameter in terminal ballistics. Here only the case of projectiles penetrating granular medium is considered. Laboratory and field tests have shown that projectile characteristics such as mass, size, and nose shape, and target characteristics such as strength and density determine the depth of penetration. Analyses of full flight data recorded by onboard data acquisition system (G-Rec) are presented. These tests have revealed very high decelerations at impact with extensive particle fracture along the path of the projectile. Particle size distribution analysis of the sample collected from the projectile tip shows two to three orders of magnitude reduction in size. For similar impact velocities and target densities, Poncelet's coefficient does not vary with tip shape.
Advances in Projectile Penetration Mechanism in Soil Media
Applied Sciences
The penetration to geological shield occurs in many situations at various velocities and scales, for example, meteor-cratering, pile driving, falling of objects from high-rise building construction, and debris/fragments from failed components. The soil media is an efficient energy dissipation system and effective shock protection shield. Impact circumstances are currently getting widespread attention. A lot of research has been done on soil media for impact and penetration. The phenomenon of dynamic penetration in heterogeneous particulate soil medium is very complex and the target soil media under dynamic impact especially under high speed and deep penetration neither behave completely as solid nor as liquid. The topics of recent research interest in the field of penetration to soil media and their significant findings are critically reviewed in the present study. The dedicated review of analytical, empirical, experimental, and computational methods to predict the response of soils...
Impact and penetration of a transparent cohesive soil
Nucleation and Atmospheric Aerosols, 2020
Experiments were designed to study the terminal phase of penetration in a synthetic soft clay. Rod-cone projectiles were launched at speeds of approximately 5 m/s into a saturated soft transparent surrogate for saturated marine clay. Quasi-static tests were also performed into the same material. The average penetration resistance was 22 kPa. It was found that rate effects and shaft resistance were relatively small. A practical result is that resistance to dynamic penetration in this material can be estimated from quasi-static cone penetration tests. The stress (load/area) required to extract penetrators was very similar to the penetration resistance.
Penetration of granular materials by small-arms bullets
International Journal of Impact Engineering, 2015
This paper presents an experimental and numerical study on the penetration of granular materials by small-arms bullets. In the experimental tests, five different types of granular material (0-2 mm wet sand, 0-2 mm dry sand, 2-8 mm gravel, 8-16 mm crushed stone and 16-22 mm crushed rock) were impacted by four different types of smallarms bullets (7.62 mm Ball with a soft lead core, 7.62 mm AP with a hard steel core, 12.7 mm Ball with a soft steel core and 12.7 mm AP with a tungsten carbide core). The tests were carried out using different rifles to fire the projectiles, while the granular materials were randomly packed in a 320 mm diameter specially-designed steel tube. In all tests, the initial projectile velocity and the depth of penetration in the granular material were measured for each bullet type. In the numerical simulations, a discrete particle-based approach was used to model the behaviour of sand during bullet impact. The method works with discrete particles that transfer forces between each other through contact and elastic collisions, allowing for a simple and robust treatment of the interaction between the sand particles and the bullet which is represented by finite elements. An important observation from the study is that the penetration depth in dry sand is strongly influenced by deviation of the bullet from its original trajectory. Good agreement between the available experimental results and the numerical predictions is also in general obtained.
Penetration of Cylindrical Projectiles into Saturated Sandy Media
Experimental Mechanics, 2008
The time and depth of vertical one-dimensional projectile penetration into sandy media in the near shore region are derived. A precise definition for the physical properties and for the behavior of the sandy medium following the projectile impact are evaluated. Three separate time intervals following projectile impact are identified. During the first 3 ms of penetration, the deviatoric friction stress is shown to be negligible and the integrated Mie-Grüneisen equation of state (or, equivalently, the Hugoniot-adiabat) may be applied to compute the normal penetration resistance force from the sand pressure. In order to compute sand pressure as a function of the sand density D by the integrated Mie-Grüneisen equation of state, the Mie-Grüneisen dimensionless constants γ 0 and s and the dimensional speed of sound C 0 in the sandy medium are required. In order to illustrate the onedimensional shock wave propagation in both wet and dry sands, Hugoniot data for wet and dry silica sands are evaluated by a three degrees of freedom algorithm to compute these required constants. The numerical results demonstrate that the amplitude of the shock wave pressure in the wet silica sand (41% porosity) is approximately onethird of the shock wave pressure amplitudes in the dry silica sands (22% and 41% porosity). In addition, the shock wave pressure dampens quicker in the wet sand than in the dry sands.
Visualizing the Fundamental Physics of Rapid Earth Penetration Using Transparent Soils
IFCEE 2015, 2015
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Physics based Prediction of Unexploded Ordnance Penetration in Granular Materials
2017
Objectives: In accordance with the Munitions Response Program of the Exploratory Development of the Strategic Environmental Research and Development Program (SERDP) (i.e., MRSEED-16-01), the objectives of the present study are to: • Quantify statistical penetration depths through explicit numerical simulations of projectile penetration for a variety of soil types, moisture contents, and impact conditions; X
A novel experimental setup for an oblique impact onto an inclined granular layer
Review of Scientific Instruments
We develop an original apparatus of the granular impact experiment by which the incident angle of the solid projectile and inclination angle of the target granular layer can be systematically varied. Whereas most of the natural cratering events occur on inclined surfaces with various incident angles, there have not been any experiments on oblique impacts on an inclined target surface. To perform systematic impact experiments, a novel experimental apparatus has to be developed. Therefore, we build an apparatus for impact experiments where both the incident angle and the inclination angle can be independently varied. The projectile-injection unit accelerates a plastic ball (6 mm in diameter) up to v i 100 m s −1 impact velocity. The barrel of the injection unit is made with a three-dimensional printer. The impact dynamics is captured by high-speed cameras to directly measure the impact velocity and incident angle. The rebound dynamics of the projectile (restitution coefficient and rebound angle) is also measured. The final crater shapes are measured using a line-laser profiler mounted on the electric stages. By scanning the surface using this system, a three-dimensional crater shape (height map) can be constructed. From the measured result, we can define and measure the characteristic quantities of the crater. The analyzed result on the restitution dynamics is presented as an example of systematic experiments using the developed system.