Experimental assessment of mixed-mode partition theories for generally laminated composite beams (original) (raw)
Three different approaches to partitioning mixed-mode delaminations are assessed for their ability to predict the interfacial fracture toughness of generally laminated composite beams. This is by using published data from some thorough and comprehensive experimental tests carried out by independent researchers (Davidson et al., 2000 and 2006). Wang and Harvey’s (2012) Euler beam partition theory is found to give very accurate prediction of interfacial fracture toughness for arbitrary layups, thickness ratios and loading conditions. Davidson et al.’s (2000) non-singular-field partition theory has excellent agreement with Wang and Harvey’s Euler beam partition theory for unidirectional layups. Although Davidson et al.’s partition theory predicts the interfacial fracture toughness of multidirectional layups reasonably well, overall Wang and Harvey’s Euler beam partition theory is found to give better predictions. In general, the singular-field approach based on 2D elasticity and the finite element method gives poor predictions of fracture toughness.