Automatic Grading of Portuguese Short Answers Using a Machine Learning Approach (original) (raw)

Short answers are routinely used in learning environments for students’ assessment. Despite its importance, teachers find the task of assessing discursive answers very time-consuming. Aiming at assisting in this problem, this work explores the Automatic Short Answer Grading (ASAG) field using a machine learning approach. The literature was reviewed and 44 papers using different techniques were analyzed considering many aspects. A Portuguese dataset was build with more than 7000 short answers. Different approaches were experimented and a final model was created with their combination. The model’s effectiveness showed to be satisfactory, with kappa scores indicating moderate/substantial agreement between the model and human grading.