Antigen-specific T-cell receptor signatures of cytomegalovirus infection (original) (raw)

T Cell Receptor Diversity Inversely Correlates with Pathogen-Specific Antibody Levels in Human Cytomegalovirus Infection

Science Translational Medicine, 2012

A diverse T-cell receptor (TCR) repertoire capable of recognizing a broad range of antigenic peptides is thought to be central to effective pathogen-specific immunity by counteracting escape mutations, selecting high-avidity T cells, and providing T-cell specificities with comprehensive functional characteristics. However, evidence that TCR diversity is important for the successful control of human infections is limited. A single-cell strategy for the clonotypic analysis of human CD8+ TCRαβ repertoires was used to probe the diversity and magnitude of individual human cytomegalovirus (CMV)-specific CD8+ T-cells recovered directly ex vivo. We found that CD8+ TCRαβ repertoire diversity, but not the size of the CD8+ T-cell response, was inversely related to circulating CMV-specific antibody levels, a measure that has been correlated epidemiologically with differential mortality risks and found here to be higher in persons with detectable (versus undetectable) CMV viral loads. Overall, our findings indicate that CD8+ T-cell diversity may be more important than T-cell abundance in limiting the negative consequences of CMV persistence, demonstrate high prevalence of both TCRα and β public motif usage, and suggest that a highly diverse TCRαβ repertoire may be an important benchmark and target in the success of immunotherapeutic strategies.

Common T-Cell-Receptor Motifs and Features in Patients with Cytomegalovirus (CMV)-Seronegative End-Stage Renal Disease Receiving a Peptide Vaccination against CMV

International Journal of Molecular Sciences, 2022

After solid-organ transplantation, reactivation of the cytomegalovirus (CMV) is often observed in seronegative patients and associated with a high risk of disease and mortality. CMV-specific T cells can prevent CMV reactivation. In a phase 1 trial, CMV-seronegative patients with end-stage renal disease listed for kidney transplantation were subjected to CMV phosphoprotein 65 (CMVpp65) peptide vaccination and further investigated for T-cell responses. To this end, CMV-specific CD8+ T cells were characterized by bulk T-cell-receptor (TCR) repertoire sequencing and combined single-cell RNA and TCR sequencing. In patients mounting an immune response to the vaccine, a common SYE(N)E TCR motif known to bind CMVpp65 was detected. CMV-peptide-vaccination-responder patients had TCR features distinct from those of non-responders. In a non-responder patient, a monoclonal inflammatory T-cell response was detected upon CMV reactivation. The identification of vaccine-induced CMV-reactive TCRs mot...

Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire

Nature genetics, 2017

An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological ph...

Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation

Journal of Clinical Investigation, 2010

CD8 + T cells play a critical role in the immune response to viral pathogens. Persistent human cytomegalovirus (HCMV) infection results in a strong increase in the number of virus-specific, quiescent effector-type CD8 + T cells with constitutive cytolytic activity, but the molecular pathways involved in the induction and maintenance of these cells are unknown. We show here that HCMV infection induced acute and lasting changes in the transcriptomes of virus-reactive T cells collected from HCMV-seropositive patients at distinct stages of infection. Enhanced cell cycle and metabolic activity was restricted to the acute phase of the response, but at all stages, HCMV-specific CD8 + T cells expressed the Th1-associated transcription factors T-bet (TBX21) and eomesodermin (EOMES), in parallel with continuous expression of IFNG mRNA and IFN-γ-regulated genes. The cytolytic proteins granzyme B and perforin as well as the fractalkine-binding chemokine receptor CX3CR1 were found in virus-reactive cells throughout the response. During HCMV latency, virus-specific CD8 + T cells lacked the typical features of exhausted cells found in other chronic infections. Persistent effector cell traits together with the permanent changes in chemokine receptor usage of virus-specific, nonexhausted, long-lived CD8 + T cells may be crucial to maintain lifelong protection from HCMV reactivation.

Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

Scientific Reports, 2014

Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

Repertoire, diversity, and differentiation of specific CD8 T cells are associated with immune protection against human cytomegalovirus disease

2000

To determine the correlates of immune recovery from active human CMV (HCMV) disease, we compared the antigenic repertoire, diversity, magnitude, and differentiation of HCMV-specific CD8+ T cells in HIV-HCMV coinfected subjects with no, cured, or active HCMV disease and in healthy HIV-negative HCMV-positive controls. ELISPOT-IFN-gamma assays using peptide pools spanning the pp65 and immediate early 1 (IE1) HCMV proteins showed that HCMV-specific CD8+ T cells had a significantly broader antigenic repertoire and greater diversity in HIV-positive patients controlling HCMV replication than in those with active HCMV disease, but the magnitude of the CD8 T cell response did not differ between the different groups. HCMV-specific T cells mainly were focused against IE1 during the short-term recovery from retinitis, and switched toward pp65 during long-term recovery. HCMV-specific T cells displaying an "early" (CD8+CD27+CD28+) and "intermediate" (CD8+CD27-CD28+) differentiation phenotype were increased significantly during long-term recovery compared with other HIV-positive patients and were nearly undetectable during active HCMV disease. HCMV-specific T cells with a "late" (CD8+CD27-28-) differentiation phenotype predominated in all cases. Therefore, restoration of immune protection against HCMV after active HCMV disease in immunodeficient individuals is associated with enlarged repertoire and diversity, and with early differentiation of virus-specific CD8+ T cells, thus defining immune correlates of protection against diseases caused by persistent viruses.

Tetramer-based quantification of cytomegalovirus (CMV)–specific CD8+ T lymphocytes in T-cell–depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection

Blood, 2001

Recovery of cytomegalovirus (CMV)–specific T-cell–mediated immunity after allogeneic hematopoietic stem cell transplantation (SCT) is critical for protection against CMV disease. The study used fluorochrome-conjugated tetrameric complexes of HLA-A2 molecules loaded with the immunodominant NLVPMVATV (NLV) peptide derived from the CMV protein pp65 to quantify A2-NLV–specific CD8+ T cells in partially T-cell–depleted grafts administered to 27 HLA-A*0201+ patients and to monitor recovery of these T cells during the first 12 months after SCT. None of the 9 CMV-seronegative patients became infected with CMV, whereas 14 of 18 CMV-seropositive patients developed CMV antigenemia after SCT. CMV-seropositive recipients of grafts from CMV-seronegative donors required more preemptive treatment with ganciclovir (GCV) than those of grafts from CMV-seropositive donors (3 [1-6] versus 1 [0-3] courses, respectively; P = .009). The number of A2-NLV–specific CD8+ T cells in the grafts correlated invers...

Characterization of human cytomegalovirus peptide-specific CD8 T-cell repertoire diversity following in vitro restimulation by antigen-pulsed dendritic cells

2002

Under conditions of impaired T-cell immunity, human cytomegalovirus (HCMV) can reactivate from lifelong latency, resulting in potentially fatal disease. A crucial role for CD8 ؉ T cells has been demonstrated in control of viral replication, and high levels of HCMV-specific cytotoxic T-lymphocytes are seen in immunocompetent HCMV-seropositive individuals despite very low viral loads. Elucidation of the minimum portion of the anti-HCMV T-cell repertoire that is required to suppress viral replication requires further study of clonal composition. The ability of dendritic cells to take up and process exogenous viral antigen by constitutive mac-ropinocytosis was used to study HCMVspecific T-cell memory in the absence of viral replication. The specificity and clonal composition of the CD8 ؉ T-cell responses were evaluated using HLA tetrameric complexes and T-cell receptor ␤ chain (TCRBV) spectratypic analyses. There was a skewed reactivity toward the matrix protein pp65, with up to 40-fold expansion of CD8 ؉ T cells directed toward a single peptide-MHC combination. Individual expansions detected on TCRBV spectratype analysis were HCMV-specific and composed of single or highly restricted numbers of clones. There was preferential TCRBV gene usage (BV6.1/ 6.2, BV8, and BV13 in HLA-A*0201 ؉ individuals) but lack of conservation of CDR3 length and junctional motifs between donors. While there was a spectrum of TCR repertoire diversity directed toward individual MHC-peptide combinations between donors, a relatively small number of clones appeared to predominate the response in each case. These data provide further insight into the range of anti-HCMV responses and will aid the design and monitoring of adoptive immunotherapy protocols. (Blood. 2002;99: 213-223)

TCR β-Chain Sharing in Human CD8+ T Cell Responses to Cytomegalovirus and EBV

The Journal of Immunology, 2008

The CD8+ TCR repertoires specific for many immunogenic epitopes of CMV and EBV are dominated by a few TCR clonotypes and involve public TCRs that are shared between many MHC-matched individuals. In previous studies, we demonstrated that the observed sharing of epitope-specific TCRβ chains between individuals is strongly associated with TCRβ production frequency, and that a process of convergent recombination facilitates the more efficient production of some TCRβ sequences. In this study, we analyzed a total of 2836 TCRβ sequences from 23 CMV-infected and 10 EBV-infected individuals to investigate the factors that influence the sharing of TCRβ sequences in the CD8+ T cell responses to two immunodominant HLA-A*0201-restricted epitopes from these viruses. The most shared TCRβ amino acid sequences were found to have two features that indicate efficient TCRβ production, as follows: 1) they required fewer nucleotide additions, and 2) they were encoded by a greater variety of nucleotide se...