A Comparative Analysis between Conventional Manufacturing and Additive Manufacturing of Ankle-foot Orthosis (original) (raw)
Related papers
Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software
Applied bionics and biomechanics, 2017
We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the "STL" file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as...
Journal of Foot and Ankle Research, 2019
Background: Ankle-foot orthoses (AFO) are prescribed to manage difficulty walking due to foot drop, bony foot deformities and poor balance. Traditional AFOs are handmade using thermoplastic vacuum forming which provides limited design options, is labour-intensive and associated with long wait times. 3D printing has the potential to transform AFO production and health service delivery. The aim of this systematic review was to determine the feasibility of designing, manufacturing and delivering customised 3D printed AFOs by evaluating the biomechanical outcomes, mechanical properties and fit of 3D printed compared to traditionally manufactured AFOs. Method: Electronic databases were searched from January 1985 to June 2018 according to terms related to 3D printing and AFOs. Studies of any design from healthy or pathological populations of any age were eligible for inclusion. Studies must have investigated the effect of customised 3D printed AFOs using any 3D printing technique on outcomes related to walking ability, biomechanical function, mechanical properties, patient comfort, pain and disability. Any other orthotic type or AFOs without a 3D printed calf and foot section were excluded. The quality of evidence was assessed using the GRADE process. Results: Eleven studies met the eligibility criteria evaluating 3D printed AFOs in healthy adults, and adults and children with unilateral foot drop from a variety of conditions. 3D printing was used to replicate traditional AFOs and develop novel designs to optimise the stiffness properties or reduce the weight and improve the ease of use of the AFO. 3D printed custom AFOs were found to be comparable to traditional custom AFOs and prefabricated AFOs in terms of temporal-spatial parameters. The mechanical stiffness and energy dissipation of 3D printed AFOs were found to be similar to prefabricated carbon-fibre AFOs. However, the sample sizes were small (n = 1 to 8) and study quality was generally low. Conclusion: The biomechanical effects and mechanical properties of 3D printed AFOs were comparable to traditionally manufactured AFOs. Developing novel AFO designs using 3D printing has many potential benefits including stiffness and weight optimisation to improve biomechanical function and comfort.
The Application of Additive Manufacturing in Developing 3D Printed Prostethics and Orthotic Devices
2020
This paper covers the advanced Additive Manufacturing (AM) techniques used to fabricate prostethic and orthotic devices. It reviews the available literature and summarizes the advances in medicine, computing and engineering that have led to the development of currently available prostheses. Some of the open-source bionic hands and other available prosthesis are shown, as well as the technologies and materials which are used to manufacture the parts. Since prototyping, combined with the possibility for easy maintenance and repair, is very attractive for prosthesis design, as a conclusion we summarize and discuss some of the key areas that could lead to improvements in bionic limb functionality and use.
A Review of Additive Manufacturing Studies for Producing Customized Ankle-Foot Orthoses
Bioengineering
Ankle-foot orthoses (AFO) are prescribed to improve the patient’s quality of life. Supporting weak muscles or restraining spastic muscles leads to smoother and more stable locomotion. Commonly, AFO are made using thermoplastic vacuum forming, which requires a long time for production and has limited design options. Additive manufacturing (AM) can solve this problem, leading to a faster and cheaper solution. This review aimed to investigate what is the state-of-art using AM for AFO. Evaluating the used manufacturing processes, customization steps, mechanical properties, and biomechanical features in humans would provide significant insights for further research. The database searches combined AM and AFO with no year or publication type restrictions. Studies must have examined outcomes on human participants with the orthoses built by AM. Other types of orthotic devices or different manufacturing techniques were excluded. Nineteen studies met the inclusion criteria. As stated by having...
Additive Manufacturing and Testing of a Prosthetic Foot Ankle Joint
International Journal of Trend in Scientific Research and Development, 2019
Ankle replacement is a fairly new concept and is one of the popular treatments of ankle fractures and arthritis. This project focuses on modelling and 3D Printing of a prosthetic talocrural joint. The standard sizes of tibia which is the larger bone of lower leg and talus being lower part of the ankle joint, are observed and modeled accordingly by using CATIA with standard dimensions. The prototype is made with PLA plastic using an FDM (Fused Deposition Modelling) 3D printer. The analytical tests carried on ANSYS by applying human weight on the tibial surface and physical tests are conducted on Universal testing machine. The compression force is applied on the prototype and observed till failure. Results obtained are compared for static position of the foot, of both analytical and physical outcomes.
Design and Fabrication of Prosthetic and Orthotic Product by 3D Printing
Prosthetics and Orthotics, 2021
In the clinical field, 3D Printing producing is a progressive innovation for various applications, specifically on account of its capacity to customize. From bioprinting to the making of clinical items, for example, inserts, prostheses, or orthoses, it is having a significant effect. Given that there are many energizing activities and organizations in every one of these territories today we will present to you a positioning of the best 3D printed orthoses. Dissimilar to prostheses that supplant a non-existent piece of the body, orthoses are clinical gadgets that are made to settle, soothe, immobilize, control, or right a piece of the body. Since every patient is unique, 3D printing is especially appropriate for these kinds of items and gadgets. Requiring an orthotic or prosthetic item likely methods a work concentrated, tedious, and chaotic procedure. For makers, creating great fitting orthotic and prosthetic gadgets is costly and requires profoundly gifted staff. Patients can antic...
Additive manufacturing of customized lower limb orthoses – A review
International Journal for Innovation Education and Research
Additive manufacturing (AM) has been successfully applied in the healthcare and shows potential for modernization of lower limb orthoses manufacturing process. This study aims to analyze the scientific production of AM application in customized lower limb orthoses production (foot and ankle-foot orthoses) to identify possible research gaps. To reach the proposed objective, a systematic literature review was carried out, based on the construction of a bibliographic portfolio, a bibliometric study and on article content analysis. Some study gaps were identified as the cost of the 3D digitalizing and the additive manufacturing process employed. This review will be the basis for the development of research on the application of low cost 3D digitizing and 3D printing technologies in the development of lower limb orthoses.
In lumbar disc herniation a possible functional problem in the ambulation is the Foot-drop syndrome caused by radicular nerve pinching. This causes a dramatic loss in gait cycle efficiency. In the rehabilitation process patients may benefit from wearing a foot orthosis that prevents them from falling and secondary injuries. Evidence in the literature suggests the important correlation between the optimal match of the forces produced during human gait and the rigidity of the constructive materials. The inherent rigidity of the materials plays an important role in determining its biomechanical functions. The paper proposes an experimental and numerical characterization of 3D printed ABS and PLA specimens using a universal traction-compression testing machine and a finite element method numerical simulation.
Novel Plantar Surface Design of a Hinged Ankle Foot Orthosis (HAFO) Manufactured by 3D Printing
Proceedings of the 3rd World Congress on New Technologies, 2020
Ankle foot orthosis manufactured by 3D printing have several benefits in terms of the manufacturing process, such as the diversity of designs and precision of manufacture. However, for the 3D printed orthosis to be functional, it is necessary to observe its mechanical behavior in relation to the forces acting during gait. It is common to observe high stiffness in orthoses manufactured by 3D printing during the foot roll phase, which can interfere with the performance of functional mobility. This study proposes new geometry in the plantar region of the orthosis, based on data from computer simulations, in order to provide its flexibility during gait, helping to improve the performance of this functional activity. The results showed that the new surface deformed 465% more (30.01 mm) compared to the traditional surface (6.45 mm).
Improvement of Human Gait in Foot Deformities Patients by 3D Printed Ankle–Foot Orthosis
2020
Lower leg–foot orthoses (AFOs) are assistive contraptions supported for different physical and neurological messes impacting the flexibility of the lower members. Added substance manufacturing item has been researched as an elective method; regardless, it has ended up being inefficient cost-wise. This work intends to explore the potential results of making specific AFO parts, explicitly, calf, shank and footplate, with the kept composite stronghold that aides in the streamlining of the device to the extent convenience, style, inflexible nature and cost. This work shows the insignificant exertion 3D printing with fortress approach as an elective course for the arranging and amassing of orthotic contraptions with complex shapes. This assessment looked into the fields related to 3D checking, 3D printing aided sketching out for the collecting of an unbending AFO.