Diversity in the lysis-integration region of oenophage genomes and evidence for multiple tRNA loci, as targets for prophage integration in Oenococcus oeni (original) (raw)

Gene organization in a central DNA fragment of Oenococcus oeni bacteriophage fOg44 encoding lytic, integrative and non-essential functions

Gene, 1999

The nucleotide sequence of a DNA fragment previously shown to contain the attachment site (attP) of Oenococcus oeni phage fOg44 (Santos et al., 1998. Arch. Virol. 143, 523-536) has been determined. Sequence analysis indicated that this 6226 bp EcoRI fragment harbours an integrase gene, in the vicinity of a direct repeat rich region defining attP, as well as genes encoding a muramidase-related lysin (Lys) and a holin polypeptide (Hol). Transcriptional studies suggested that lys and hol are mainly co-expressed, late in the lytic cycle, from a promotor located upstream of lys. Between the lytic cassette and the phage integration elements three additional open reading frames were found: orf217 and orf252 of unknown function and orf72, the putative product of which bears 32% identity with acidic excisionases from other Gram positive phages. We have established that the first two orfs, as well as the predicted promotor of orf72, are included in a 2143-bp DNA segment missing from the genome of the deletion mutant fOg44D2. Although lysogens of fOg44 and fOg44D2 exhibited similar properties, each phage produced two distinguishable types of lysogenic strains, differing in inducibility and immunity to other oenophages.

Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage φ10MC

FEMS Microbiology Letters, 1999

Malolactic fermentation by Oenococcus oeni is a crucial step in wine-making. Oe. oeni phages are thought to be responsible for fermentation failures, yet they have received little attention. After a molecular analysis concerning the phage P10MC integration system, this paper focuses on the lytic system. The attP (phage attachment site)-flanking region has been cloned and sequenced. The 1296-bp lysin gene (Lys) was identified in this region. The deduced amino acid sequence showed classical structural features of phage lysins, and this gene product expressed in Escherichia coli had a lytic activity against Oe. oeni. Downstream of Lys, a second ORF was present (P163). According to its amino acid sequence and the location of its gene, the product could be the P10MC holin. This study shows that the genomic organization of phage P10MC attP-flanking regions is very similar to that of other lactic acid bacteriophages.

Distribution of Prophages in the Oenococcus oeni Species

2021

Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications f...

The N-Terminal Region of the Oenococcus oeni Bacteriophage fOg44 Lysin Behaves as a Bona Fide Signal Peptide in Escherichia coli and as a cis-Inhibitory Element, Preventing Lytic Activity on Oenococcal Cells

Journal of Bacteriology, 2000

The function of the N-terminal region of the Oenococcus oeni phage fOg44 lysin (Lys44) as an export signal was investigated. We observed that when induced in Escherichia coli, Lys44 was cleaved between residues 27 and 28 in a SecA-dependent manner. Lys44 processing could be blocked by a specific signal peptidase inhibitor and was severely reduced by modification of the cleavage site. The lethal effect of Lys44 expression observed inE. coli was ascribed to the presence of its N-terminal 27-residue sequence, as its deletion resulted in the production of a nontoxic, albeit active, product. We have further established that lytic activity in oenococcal cells was dependent on Lys44 processing. An active protein with the molecular mass expected for the cleaved enzyme was detected in extracts from O. oeni-infected cells. The temporal pattern of its appearance suggests that synthesis and export of Lys44 in the infected host progress along with phage maturation. Overall, these results provide...

Modulation of OMV Production by the Lysis Module of the DLP12 Defective Prophage of Escherichia coli K12

Microorganisms

Outer membrane vesicles (OMVs) are nanostructures mostly produced by blebbing of the outer membrane in Gram negative bacteria. They contain biologically active proteins and perform a variety of processes. OMV production is also a typical response to events inducing stress in the bacterial envelope. In these cases, hypervesiculation is regarded as a strategy to avoid the dangerous accumulation of undesired products within the periplasm. Several housekeeping genes influence the biogenesis of OMVs, including those correlated with peptidoglycan and cell wall dynamics. In this work, we have investigated the relationship between OMV production and the lysis module of the E. coli DLP12 cryptic prophage. This module is an operon encoding a holin, an endolysin and two spannins, and is known to be involved in cell wall maintenance. We find that deleting the lysis module increases OMV production, suggesting that during evolution this operon has been domesticated to regulate vesiculation, likel...

Site-Specific Integrative Elements of Rhizobiophage 16-3 Can Integrate into Proline tRNA (CGG) Genes in Different Bacterial Genera

Journal of Bacteriology, 2002

The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells.

Genomic Analysis of Clostridium perfringens Bacteriophage 3626, Which Integrates into guaA and Possibly Affects Sporulation

Journal of Bacteriology, 2002

Two temperate viruses, 3626 and 8533, have been isolated from lysogenic Clostridium perfringens strains. Phage 3626 was chosen for detailed analysis and was inspected by electron microscopy, protein profiling, and host range determination. For the first time, the nucleotide sequence of a bacteriophage infecting Clostridium species was determined. The virus belongs to the Siphoviridae family of the tailed phages, the order Caudovirales. Its genome consists of a linear double-stranded DNA molecule of 33,507 nucleotides, with invariable 3-protruding cohesive ends of nine residues. Fifty open reading frames were identified, which are organized in three major life cycle-specific gene clusters. The genes required for lytic development show an opposite orientation and arrangement compared to the lysogeny control region. A function could be assigned to 19 gene products, based upon bioinformatic analyses, N-terminal amino acid sequencing, or experimental evidence. These include DNA-packaging proteins, structural components, a dual lysis system, a putative lysogeny switch, and proteins that are involved in replication, recombination, and modification of phage DNA. The presence of genes encoding a putative sigma factor related to sporulation-dependent sigma factors and a putative sporulation-dependent transcription regulator suggests a possible interaction of 3626 with onset of sporulation in C. perfringens. We found that the 3626 attachment site attP lies in a noncoding region immediately downstream of int. Integration of the viral genome occurs into the bacterial attachment site attB, which is located within the 3 end of a guaA homologue. This essential housekeeping gene is functionally independent of the integration status, due to reconstitution of its terminal codons by phage sequence.

Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1

Journal of bacteriology, 1999

In this work, the phage-encoded proteins involved in site-specific excision of the prophage genome of the temperate lactococcal bacteriophage TP901-1 were identified. The phage integrase is required for the process, and a low but significant frequency of excision is observed when the integrase is the only phage protein present. However, 100% excision is observed when the phage protein Orf7 is provided as well as the integrase. Thus, Orf7 is the TP901-1 excisionase, and it is the first excisionase identified that is used during excisive recombination catalyzed by an integrase belonging to the family of extended resolvases. Orf7 is a basic protein of 64 amino acids, and the corresponding gene (orf7) is the third gene in the early lytic operon. This location of an excisionase gene of a temperate bacteriophage has never been described before. The experiments are based on in vivo excision of specifically designed excision vectors carrying the TP901-1 attP site which are integrated into a...

A Genetic Screen to Identify Sequences That Mediate Protein Oligomerization in Escherichia coli

Biochemical and Biophysical Research Communications, 1999

Many proteins assemble as oligomeric complexes and in several cases a distinct domain mediates the interaction between the subunits. The identification of new oligomerization modules is relevant to comprehend both the architecture and the evolution of protein sequences and also for protein engineering applications. Using the bacteriophage repressor dimerization assay, we searched Escherichia coli genomic libraries for sequences able to mediate protein oligomerization in vivo. We identified short peptides that can substitute very effectively the dimerizing domain of the repressor. Most of these peptides belong to open reading frames that are normally not expressed in the bacterial cell.

A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA

Molecular Microbiology, 2004

Several temperate bacteriophage utilize chromosomal sequences encoding putative tRNA genes for phage attachment. However, whether these sequences belong to genes which are functional as tRNA is generally not known. In this article, we demonstrate that the attachment site of temperate phage 16-3 ( attB ) nests within an active proline tRNA gene in Rhizobium meliloti 41. A loss-of-function mutation in this tRNA gene leads to significant delay in switching from lag to exponential growth phase. We converted the putative Rhizobium gene to an active amber suppressor gene which suppressed amber mutant alleles of genes of 16-3 phage and of Escherichia coli origin in R. meliloti 41 and in Agrobacterium tumefaciens GV2260. Upon lysogenization of R. meliloti by phage 16-3 , the proline tRNA gene retained its structural and functional integrity. Aspects of the co-evolution of a temperate phage and its bacterium host is discussed. The side product of this work, i.e. construction of amber suppressor tRNA genes in Rhizobium and Agrobacterium , for the first time widens the options of genetic study.