Identification of a sub-population of B cells that proliferates after infection with Epstein-Barr virus (original) (raw)

Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells

PLoS ONE, 2009

Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6-7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6-12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.

Cellular factors associated with latency and spontaneous Epstein–Barr virus reactivation in B-lymphoblastoid cell lines

Virology, 2010

EBV-immortalized B-lymphoblastoid cell lines are used as models for cellular transformation and as antigenpresenting cells in immunological assays. LCLs vary in surface markers and other phenotypic properties, but it is not known how this heterogeneity relates to the EBV life cycle. To explore correlations, we examined 62 LCLs for cellular and viral phenotypes. LCLs generated from pediatric and adult donors could similarly be categorized as either low in EBV copy number or fluctuating within a high range. High-copy status accompanied higher lytic viral gene expression and lower latent gene expression. Inhibiting lytic EBV replication did not affect cellular phenotype or lytic switch protein expression, indicating that an LCL's lytic permissivity was a stable property. Among the cellular genes overexpressed in permissive LCLs were unfolded protein response genes and plasma cell markers. Among genes overexpressed in non-permissive LCLs were transcription factors involved in maintaining B cell lineage, in particular EBF1. This study suggests previously undetected mechanisms by which cellular pathways influence the lytic reactivation of EBV.

First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus

mBio

Epstein-Barr virus (EBV) infects and activates resting human B lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines, many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, prelatent phase of infection have not been investigated systematically. In studies during the first 8 days of infection using derivatives of EBV with mutations in single genes of EBVs, we found only Epstein-Barr nuclear antigen 2 (EBNA2) to be essential for activating naive human B lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, latent membrane protein 2A (LMP2A), and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding Epstein-Barr virus with sm...

The first days in the life of naïve human B-lymphocytes infected with Epstein-Barr virus

Epstein-Barr virus (EBV) infects and activates resting human B-lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, pre-latent phase of infection have not been investigated systematically. In studies during the first eight days of infection using derivatives of EBV with mutations in single genes of EBVs we found only EBNA2 to be essential for activating naive human B-lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, LMP2A and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding EBER RNAs had no discernable phenotype compared with wild-type EBV. B cells infected w...

Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes

Biochemical and Biophysical Research Communications, 2010

Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis.

The Effect of Epstein-Barr Virus Latent Membrane Protein 2 Expression on the Kinetics of Early B Cell Infection

PLoS ONE, 2013

Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (D2A, D2B, D2A/D2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with D2A and D2A/D2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. D2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, D2A and D2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in D2A virus infection. Infection with D2A and D2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of D2A/D2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein.

Immune activation suppresses initiation of lytic Epstein-Barr virus infection

Cellular Microbiology, 2007

or adults with mature immune systems. Infectious mononucleosis and chronic immune activation are linked to increased risk for EBV-associated lymphoma. Here we show that EBV initiates progressive lytic infection by expression of BZLF-1 and the late lytic genes gp85 and gp350/220 in cord blood mononuclear

Epstein–Barr virus infection leads to partial phenotypic reversion of terminally differentiated malignant B cells

Cancer Letters, 2009

The B cell lymphomas associated with Epstein-Barr virus (EBV) are not limited to any specific stage of B cell differentiation but covers widely different B cell phenotypes. In vitro infection of the virus negative tumors with a recombinant EBV strain has provided important insights into virus-tumor interaction. Here, we investigated the interaction between EBV and terminally differentiated tumor derived B cells, namely multiple myeloma (MM). The in vitro EBV infected MM expressed restricted viral latency. Acquisition of the virus was accompanied by a partial reprogramming to a mature B cell phenotype. Thus, the plasma cell markers syndecan-1 (CD138), Blimp1 and MUM1 were downregulated, while expression of HLADR, CIITA and TCL1, which are normally not expressed in plasmacytoid cells, was upregulated. The silenced transcription factor gene encoding Pax5 and its target BLNK were activated. Significantly, the free lambda light chains secreted in the medium were reduced in EBV infected MM clones. Collectively, these results suggest that the restricted EBV latency can cause at least partial phenotypic reversion of terminally differentiated B tumor cells. We suggest that the restricted EBV latent gene expression may not only be the consequence but the cause of the mature B cell phenotype, actively participating in the virus persistence.