A Mechanistic Study of Enhanced Doxorubicin Uptake and Retention in Multidrug Resistant Breast Cancer Cells Using a Polymer-Lipid Hybrid Nanoparticle System (original) (raw)

A New Polymer–Lipid Hybrid Nanoparticle System Increases Cytotoxicity of Doxorubicin Against Multidrug-Resistant Human Breast Cancer Cells

Pharmaceutical Research, 2006

Purpose. This work is intended to develop and evaluate a new polymerYlipid hybrid nanoparticle system that can efficiently load and release water-soluble anticancer drug doxorubicin hydrochloride (Dox) and enhance Dox toxicity against multidrug-resistant (MDR) cancer cells. Methods. Cationic Dox was complexed with a new soybean-oil-based anionic polymer and dispersed together with a lipid in water to form Dox-loaded solid lipid nanoparticles (DoxYSLNs). Drug loading and release properties were measured spectrophotometrically. The in vitro cytotoxicity of DoxYSLN and the excipients in an MDR human breast cancer cell line (MDA435/LCC6/MDR1) and its wild-type line were evaluated by trypan blue exclusion and clonogenic assays. Cellular uptake and retention of Dox were determined with a microplate fluorometer. Results. DoxYSLNs were prepared with a drug encapsulation efficiency of 60Y80% and a particle size range of 80Y350 nm. About 50% of the loaded drug was released in the first few hours and an additional 10Y20% in 2 weeks. Treatment of the MDR cells with DoxYSLN resulted in over 8-fold increase in cell kill when compared to Dox solution treatment at equivalent doses. The blank SLN and the excipients exhibited little cytotoxicity. The biological activity of the released Dox remained unchanged from fresh, free Dox. Cellular Dox uptake and retention by the MDR cells were both significantly enhanced (p < 0.05) when Dox was delivered in DoxYSLN form. Conclusions. The new polymerYlipid hybrid nanoparticle system is effective for delivery of Dox and enhances its efficacy against MDR breast cancer cells.

Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy

International Journal of Nanomedicine, 2019

Background: Lipid polymer hybrid nanoparticles (LPHNPs) for the controlled delivery of hydrophilic doxorubicin hydrochloride (DOX.HCl) and lipophilic DOX base have been fabricated by the single step modified nanoprecipitation method. Materials and methods: Poly (D, L-lactide-co-glicolide) (PLGA), lecithin, and 1,2-distearoyl-Sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000 (DSPE-PEG 2000) were selected as structural components. Results: The mean particle size was 173-208 nm, with an encapsulation efficiency of 17.8 ±1.9 to 43.8±4.4% and 40.3±0.6 to 59. 8±1.4% for DOX.HCl and DOX base, respectively. The drug release profile was in the range 33-57% in 24 hours and followed the Higuchi model (R 2 =0.9867-0.9450) and Fickian diffusion (n<0.5). However, the release of DOX base was slower than DOX.HCl. The in vitro cytotoxicity studies and confocal imaging showed safety, good biocompatibility, and a higher degree of particle internalization. The higher internalization of DOX base was attributed to higher permeability of lipophilic component and better hydrophobic interaction of particles with cell membranes. Compared to the free DOX, the DOX.HCl and DOX base loaded LPHNPs showed higher antiproliferation effects in MDA-MB231 and PC3 cells. Conclusion: Therefore, LPHNPs have provided a potential drug delivery strategy for safe, controlled delivery of both hydrophilic and lipophilic form of DOX in cancer cells.

The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin

Biomaterials, 2010

The purpose of this study was to develop polymeric nano-carriers of doxorubicin (DOX) that can increase the therapeutic efficacy of DOX for sensitive and resistant cancers. Towards this goal, two polymeric DOX nano-conjugates were developed, for which the design was based on the use of multi-functionalized poly(ethylene oxide)-block-poly(3-caprolactone) (PEO-b-PCL) micelles decorated with avb3 integrintargeting ligand (i.e. RGD4C) on the micellar surface. In the first formulation, DOX was conjugated to the degradable PEO-b-PCL core using the pH-sensitive hydrazone bonds, namely RGD4C-PEO-b-P(CL-Hyd-DOX). In the second formulation, DOX was conjugated to the core using the more stable amide bonds, namely RGD4C-PEO-b-P(CL-Ami-DOX). The pH-triggered drug release, cellular uptake, intracellular distribution, and cytotoxicity against MDA-435/LCC6 WT (a DOX-sensitive cancer cell line) and MDA-435/ LCC6 MDR (a DOX-resistant clone expressing a high level of P-glycoprotein) were evaluated. Following earlier in vitro results, SCID mice bearing MDA-435/LCC6 WT and MDA-435/LCC6 MDR tumors were treated with RGD4C-PEO-b-P(CL-Hyd-DOX) and RGD4C-PEO-b-P(CL-Ami-DOX), respectively. In both formulations, surface decoration with RGD4C significantly increased the cellular uptake of DOX in MDA-435/ LCC6 WT and MDA-435/LCC6 MDR cells. In MDA-435/LCC6 WT , the best cytotoxic response was achieved using RGD4C-PEO-b-P(CL-Hyd-DOX), that correlated with the highest cellular uptake and preferential nuclear accumulation of DOX. In MDA-435/LCC6 MDR , RGD4C-PEO-b-P(CL-Ami-DOX) was the most cytotoxic, and this effect correlated with the accumulation of DOX in the mitochondria. Studies using a xenograft mouse model yielded results parallel to those of the in vitro studies. Our study showed that RGD4C-decorated PEO-b-P(CL-Hyd-DOX) and PEO-b-P(CL-Ami-DOX) can effectively improve the therapeutic efficacy of DOX in human MDA-435/LCC6 sensitive and resistant cancer, respectively, pointing to the potential of these polymeric micelles as the custom-designed drug carriers for clinical cancer therapy.

Exploring the Interplay between Drug Release and Targeting of Lipid-Like Polymer Nanoparticles Loaded with Doxorubicin

2021

Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood–brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rat...

New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2013

This work aimed to develop solid lipid nanoparticles (SLNs) loaded with doxorubicin evaluating the influence of docosahexaenoic acid (DHA), a polyunsaturated fatty acid that enhances the activity of anticancer drugs, on drug encapsulation efficiency (EE). The SLN were characterized for size, zeta potential, entrapment efficiency (EE) and drug release. Studies of in vitro antitumor activity and cellular uptake were also conducted. The reduction in particle size (from 127 ± 14 to 94 ± 1 nm) and negative charges were obtained for SLN loaded with DHA and triethanolamine (TEA), amine used to increase the solubility of doxorubicin in melted lipid. The EE was significantly improved from 36 ± 4% to 99 ± 2% for SLN without and with DHA at 0.4%, respectively. The doxorubicin release in a slightly acid medium (pH 5.0) was higher than that observed at physiological pH. The in vitro studies clearly showed the higher cytotoxicity of doxorubicin-DHA-loaded SLN than free doxorubicin + DHA on human lung tumor cell line (A549) and the improved cellular uptake achieved with the drug encapsulation can be an explanation. These findings suggest that DHA-doxorubicin-loaded SLN is a promising alternative for the treatment of cancer.

Augmented Anticancer Efficacy of Doxorubicin-Loaded Polymeric Nanoparticles after Oral Administration in a Breast Cancer Induced Animal Model

Molecular Pharmaceutics, 2011

The present investigation reports an extensive evaluation of in vitro and in vivo anticancer efficacy of orally administered doxorubicin-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Dox-NPs) in a breast cancer induced animal model. Spherically shaped Dox-NPs were prepared with an entrapment efficiency and particle size of 55.40 (2.30% and 160.20 (0.99 nm, respectively, and freeze-dried with 5% trehalose using stepwise freeze-drying. Cytotoxicity, as investigated on C127I cell line, revealed insignificant differences between the IC 50 of free Dox and Dox-NPs treated cells in the first 24 h, while higher cytotoxicity was demonstrated by Dox-NPs, following 72 h of incubation. Confocal laser scanning microscopy (CLSM) imaging corroborated that nanoparticles were efficiently localized into the nuclear region of C127I cells. The cellular uptake profile of Dox-NPs revealed both time and concentration dependent increases in the Caco-2 cell uptake as compared to the free Dox solution. Further, Dox-NPs significantly suppressed the growth of breast tumor in female SpragueÀDawley (SD) rats upon oral administration. Finally, orally administered Dox-NPs showed a marked reduction in cardiotoxicity when compared with intravenously injected free Dox as also evident by the increased level of malondialdehyde (MDA), lactate dehydrogenase (LDH), and creatine phosphokinase (CK-MB) and reduced levels of glutathione (GSH) and superoxide dismutase (SOD). The reduced cardiotoxicity of orally administered Dox-NPs was also confirmed by the major histopathological changes in the heart tissue after the treatments of intravenously injected free Dox and orally delivered Dox-NPs.

Smart Lipid–Polysaccharide Nanoparticles for Targeted Delivery of Doxorubicin to Breast Cancer Cells

International Journal of Molecular Sciences, 2022

In this study, actively-targeted (CD44-receptors) and dual stimuli (pH/redox)-responsive lipid–polymer nanoparticles were proposed as a delivery vehicle of doxorubicin hydrochloride in triple negative breast cancer cell lines. A phosphatidylcholine lipid film was hydrated with a solution of oxidized hyaluronic acid and doxorubicin, chosen as model drug, followed by a crosslinking reaction with cystamine hydrochloride. The obtained spherical nanoparticles (mean diameter of 30 nm) were found to be efficiently internalized in cancer cells by a receptor-mediated endocytosis process, and to modulate the drug release depending on the pH and redox potential of the surrounding medium. In vitro cytotoxicity assays demonstrated the safety and efficacy of the nanoparticles in enhancing the cytotoxic effect of the free anticancer drug, with the IC50 values being reduced by two and three times in MDA-MB-468 and MDA-MB-231, respectively. The combination of self-assembled phospholipid molecules wi...

Development and Characterization of Solid Lipid Nanoparticles Loaded with a Highly Active Doxorubicin Derivative

Nanomaterials, 2018

Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been developed for the treatment of a variety of diseases. The present study will investigate the feasibility of entrapping an active doxorubicin prodrug (a squalenoyl-derivative) in SLNs. The doxorubicin derivative-loaded SLNs are spherically shaped, have a mean diameter of 300-400 nm and show 85% w/w drug entrapment efficiency. The effects on cell growth of loaded SLNs, free doxorubicin and the prodrug have been examined using cytotoxicity and colony-forming assays in both human ovarian cancer line A2780 wild-type and doxorubicin-resistant cells. Further assessments as to the treatment's ability to induce cell death by apoptosis have been carried out by analyzing annexin-V staining and the activation of caspase-3. The in vitro data demonstrate that the delivery of the squalenoyl-doxorubicin derivative by SLNs increases its cytotoxic activity, as well as its apoptosis effect. This effect was particularly evident in doxorubicin-resistant cells.

Formulation development of lipid polymer hybrid nanoparticles of doxorubicin and its in-vitro, in-vivo and computational evaluation

Frontiers in Pharmacology

The purpose of this study was to assess the parameters of doxorubicin (DOX) loaded lipid polymer hybrid nanoparticles (LPHNs) formulation development, and then the bioavailability of DOX were determined in the rabbit model, in order to evaluate the intrinsic outcome of dosage form improvement after the oral administration. LPHNs were prepared by combine approach, using both magnetic stirring and probe sonication followed by its characterization in terms of size-distribution (Zeta Size), entrapment efficiency (EE), loading capacity, and the kinetics of DOX. LPHNPs were further characterized by using scanning electron microscopy (SEM), powder X-Ray diffractometry (P-XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), in vitro and in vivo studies. The molecular modeling was determined through the density functional theory (DFT) simulations and interactions. DOX loaded and unloaded LPHNs were administered orally to the rabbits for bioavailabil...

A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Self-Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDA-MB-231 Human Breast Cancer Cells

Macromolecular bioscience, 2016

Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent tra...