Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci (original) (raw)
Related papers
Data in Brief, 2019
This dataset is associated with our research article 'Identification of host-defence related proteins using label-free quantitative proteomic analysis of milk whey from cows with Staphylococcus aureus Subclinical mastitis' published in International Journal of Molecular Sciences. Milk samples were collected from cows suffering from S. aureus-associated subclinical mastitis and the proteins abundance were identified in comparison with samples collected from the control cows using liquid chromatography-mass spectrometry (LC-MS)-based label free proteomics analysis. Following the MS measurements, the raw spectra were processed using MaxQuant-Andromeda software and the protein identification was carried out through a search against Uniprot FASTA files of the Bos taurus reference proteome. Perseus software analysis was applied for computation of protein abundance. The raw file Contents lists available at ScienceDirect
International Journal of Molecular Sciences
Staphylococcus aureus is the most common contagious pathogen associated with bovine subclinical mastitis. Current diagnosis of S. aureus mastitis is based on bacteriological culture of milk samples and somatic cell counts, which lack either sensitivity or specificity. Identification of milk proteins that contribute to host defense and their variable responses to pathogenic stimuli would enable the characterization of putative biomarkers of subclinical mastitis. To accomplish this, milk whey samples from healthy and mastitic dairy cows were analyzed using a label-free quantitative proteomics approach. In total, 90 proteins were identified, of which 25 showed significant differential abundance between healthy and mastitic samples. In silico functional analyses indicated the involvement of the differentially abundant proteins in biological mechanisms and signaling pathways related to host defense including pathogen-recognition, direct antimicrobial function, and the acute-phase response. This proteomics and bioinformatics analysis not only facilitates the identification of putative biomarkers of S. aureus subclinical mastitis but also recapitulates previous findings demonstrating the abundance of host defense proteins in intramammary infection. All mass spectrometry data are available via ProteomeXchange with identifier PXD007516.
Journal of Proteomics, 2020
Bovine mastitis, caused by Staphylococcus aureus, is a major impediment to milk production and lacks markers to indicate disease progression in cows and buffaloes. Thus, the focus of this study was to identify proteins marking the transition from subclinical to clinical mastitis. Whey proteins were isolated from 6 group's i.e. healthy, subclinical and clinical mastitis of Holstein Friesian cow and Murrah buffalo. Mass spectrometry and statistical analysis (ANOVA and t-tests) were performed on 12 biological samples each from cow and buffalo (4 per healthy, subclinical and clinical mastitis) resulting in a total of 24 proteome datasets. Collectively, 1479 proteins were identified of which significant proteins were shortlisted by a combination of fold change (≤ 0.5 or ≥ 2) and q < 0.05. Of these proteins, 128 and 163 indicated disease progression in cow and buffalo, respectively. Change in expression of haptoglobin and fibronectin from Holstein Friesian while spermadhesin and osteopontin from Murrah correlated with disease progression. Similarly, angiogenin and cofilin-1 were upregulated while ubiquitin family members were downregulated during disease transition. Subsequently, selected proteins (e.g. osteopontin and fibrinogen-α) were validated by Western blots. The results of this study provide deeper insights into whey proteome dynamics and signature patterns indicative of disease progression. Biological significance: Bovine mastitis is the most lethal infectious disease causing a huge economic loss in the dairy industry. In an attempt, to understand the dynamics of whey proteome in response to S. aureus infection, whey protein collected from healthy, subclinical and clinical mastitic HF and Mu were investigated. A total of 1479 proteins were identified, of which 128 and 163 had signature pattern in each stage indicative of the progression of the disease. The results of the present study provide a foundation to better understand the complexity of mastitis that will ultimately help facilitate early therapeutic and husbandry-based intervention to improve animal health and milk quality.
Microorganisms, 2020
Bovine mastitis remains a primary focus of dairy cattle disease research due to its considerable negative economic impact on the dairy industry. Subclinical mastitis (SCM), commonly caused by Staphylococcus aureus, lacks overt clinical signs and the diagnosis is based on bacteriological culture and somatic cell counts of milk, both of which have limitations. The main objective of this study was to identify, characterize and quantify the differential abundance of milk whey proteins from cows with S. aureus SCM compared to whey from healthy cows. Using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with liquid chromatography and tandem mass spectrometry, 28 high-abundant proteins were detected in whey from mastitic milk, 9 of which had host defense functions. These included acute phase proteins involved in innate immunity and antimicrobial functions (e.g., serotransferrin, complement C3, fibrinogen gamma-B chain and cathepsin B), and proteins associated with the im...
Journal of Proteomics, 2013
Subclinical mastitis is one of the main causes of alteration in milk content and has a major impact on both animal welfare and economy in the dairy industry. A better knowledge is needed to understand the ovine mammary gland metabolism and its response to bacterial infection. In this study, the proteomic changes in ovine milk as a result of subclinical mastitis were investigated by comparing both whey and fat globule membrane profiles of samples from Staphylococcus chromogenes-positive individuals, with those from non-infected counterparts having high or low somatic cell count; the latter were used as control. 2-DE and combined MS procedures were utilized for this purpose. Although sample bromatological parameters were very similar, proteomic analysis highlighted significant differences between the three experimental groups. Most relevant changes were observed between samples of infected milk and control. Modifications related to the defense response of the mammary gland to the pathogen were evident, with important consequences on nutritional and technological properties of milk. On the other hand, quantitative protein changes between non-infected samples with low and high levels of somatic cells indicated that the latter may result as a consequence of a probable unpaired cellular metabolism due to cellular stress, hormonal variations or previous infections. Putative biomarkers useful for the monitoring of sheep mammary metabolism and for the careful management of ovine subclinical mastitis to avoid its clinical degeneration are proposed and discussed.
Animals
Bovine mastitis is the most frequent disease on dairy farms, which leads to a decrease in the health welfare of the animals and great economic losses. This study was aimed at determining the quantitative variations in the milk proteome caused by natural infection by Staphylococcus and Streptococcus species in order to gain further understanding of any discrepancies in pathophysiology and host immune responses, independent of the mastitis level. After identification of Staphylococcus (N = 51) and Streptococcus (N = 67) spp., tandem mass tag (TMT)-labeled quantitative proteomic and liquid chromatography-mass spectrometry (LC-MS/MS) techniques on a modular Ultimate 3000 RSLCnano system coupled to a Q Exactive Plus was applied on aseptically sampled milk from Holstein cows. Proteome Discoverer was used for protein identification and quantitation through the SEQUEST algorithm. Statistical analysis employing R was used to identify differentially abundant proteins between the groups. Prote...
Background: Proteomics and bioinformatics may help us better understand the biological adaptations occurring during bovine mastitis. This systems approach also could help identify biomarkers for monitoring clinical and subclinical mastitis. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to screen potential proteins associated with mastitis at late infectious stage. Results: Healthy and mastitic cows’ mammary gland tissues were analyzed using iTRAQ combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Bioinformatics analyses of differentially expressed proteins were performed by means of Gene Ontology, metabolic pathways, transcriptional regulation networks using Blast2GO software, the Dynamic Impact Approach and Ingenuity Pathway Analysis. At a false discovery rate of 5%, a total of 768 proteins were identified from 6,499 peptides, which were matched with 15,879 spectra. Compared with healthy mammary gland tissue, 36 proteins were significantly up-regulated (>1.5-fold) while 19 were significantly down-regulated (<0.67-fold) in response to mastitis due to natural infections with Staphylococci aureus. Up-regulation of collagen, type I, alpha 1 (COL1A1) and inter-alpha (Globulin) inhibitor H4 (ITIH4) in the mastitis-infected tissue was confirmed by Western blotting and Immunohistochemistry. Conclusion: This paper is the first to show the protein expression in the late response to a mastitic pathogen, thus, revealing mechanisms associated with host tissue damage. The bioinformatics analyses highlighted the effects of mastitis on proteins such as collagen, fibrinogen, fibronectin, casein alpha and heparan sulfate proteoglycan 2. Our findings provide additional clues for further studies of candidate genes for mastitis susceptibility. The up-regulated expression of COL1A1 and ITIH4 in the mastitic mammary gland may be associated with tissue damage and repair during late stages of infection.
Milk and serum proteomes in subclinical and clinical mastitis in Simmental cows
Journal of Proteomics, 2021
Bovine mastitis causes changes in the milk and serum proteomes. Here changes in both proteomes caused by naturally occurring subclinical and clinical mastitis have been characterised and quantified. Milk and serum samples from healthy dairy cows (n = 10) were compared to those of cows with subclinical (n = 12) and clinical mastitis (n = 10) using tandem mass tag (TMT) proteomics. Proteins that significantly increased or decreased in milk (n = 237) or serum (n = 117) were quantified and classified by the type of change in subclinical and clinical mastitis. A group of the proteins (n = 38) showed changes in both milk and serum a number of which decreased in the serum but increased in milk, suggesting a particular role in host defence for maintaining and restoring homeostasis during the disease. Proteins affected by bovine mastitis included proteins in host defence and coagulation pathways. Investigation of the modified proteomes in milk and serum was assessed by assays for haptoglobin, serum amyloid A and α 1 acid glycoprotein validating the results obtained by quantitative proteomics. Alteration of abundance patterns of milk and serum proteins, together with pathway analysis reveal multiple interactions related to proteins affected by mastitis. Data are available via ProteomeXchange with identifier PXD022595. Significance: Mastitis is the most serious condition to affect dairy cows and leads to reduced animal welfare as well as having a negative economic effect for the dairy industry. Proteomics has previously identified changes in abundance of milk proteins during mastitis, but there have been few investigations addressing changes that may affect proteins in the blood during the infection. In this study, changes in the abundance of proteins of milk and serum, caused by naturally occurring mastitis have been characterised by proteomics using a quantitative approach and both subclinical and clinical cases of mastitis have been investigated. In both milk and serum, change in individual proteins was determined and classified into varying types of altering abundance, such as increasing in subclinical mastitis, but showing no further increase in clinical mastitis. Of special interest were the proteins that altered in abundance in both milk and serum which either showed similar trendsincreasing or decreasing in both biological fluids or showed reciprocal change decreasing in serum but increasing in milk. As well as characterising proteins as potential markers of mastitis and the severity of the disease, these results provide insight into the pathophysiology of the host response to bovine mastitis.