A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy (original) (raw)
Related papers
Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis
2022
Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg 2+ ] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.
Polyamines: The possible missing link between mental disorders and epilepsy (Review)
International Journal of Molecular Medicine, 2019
Polyamines are small positively charged alkylamines that are essential in a number of crucial eukaryotic processes, like normal cell growth and development. In normal physiological conditions, intracellular polyamine content is tightly regulated through a fine regulated network of biosynthetic and catabolic enzymes and a transport system. The dysregulation of this network is frequently associated to different tumors, where high levels of polyamines has been detected. Polyamines also modulate ion channels and ionotropic glutamate receptors and altered levels of polyamines have been observed in different brain diseases, including mental disorders and epilepsy. The goal of this article is to review the role of polyamines in mental disorders and epilepsy within a frame of the possible link between these two brain pathologies. The high comorbidity between these two neurological illnesses is strongly suggestive that they share a common background in the central nervous system. This review proposes an additional association between the noradrenalin/serotonin and glutamatergic neuronal circuits with polyamines. Polyamines can be considered supplementary defensive shielding molecules, important to protect the brain from the development of epilepsy and mental illnesses that are caused by different types of neurons. In this contest, the modulation of polyamine metabolism may be a novel important target for the prevention and therapeutic treatment of these diseases that have a high impact on the costs of public health and considerably affect quality of life. Polyamine interconvertion pathway. Two step-limiting enzymes tightly regulate PA biosynthesis: ornithine decarboxylase (Odc), which produces Put by decarboxylation of ornithine and S-adenosylmethionine decarboxylase, which synthesizes S-adenosyl-methioninamine from S-adenosyl-L-methionine. Two specific aminopropyl transferases, Spd synthase and Spm synthase are also involved in the biosynthesis of PAs, adding the aminopropyl group to Put and Spd, respectively (11-13). Conversely, PA catabolism is finely regulated by the three enzymes: Spd and Spm N1-acetyltransferase
Heterogeneous distribution of polyamines in temporal lobe epilepsy
Epilepsy Research, 1999
Polyamine contents were determined in human temporal lobe epilepsy. In the seven patients studied, stereoelectroencephalography (SEEG) located the epileptogenic focus in Ammon's horn and neuropathological findings were limited to hippocampal gliosis and sclerosis. Each polyamine exhibited a specific regional distribution. The most important variations were observed for spermidine and spermine while putrescine levels varied less. The regional variation was predominant in middle \posterior\anterior parts of the temporal lobe. Spermine contents and the spermidine/spermine (SPD/SPM) index varied especially in the middle and posterior parts of the hippocampus. Metabolic SPD/SPM index and spermidine levels were found to be drastically increased in almost all limbic parts when compared to neocortical regions. The opposite was observed for spermine. The heterogeneous distribution of polyamines was compared to abnormal electrical activities recorded by SEEG: SPD/SPM index and spermidine levels were sharply increased in seizure onset areas and high levels of spermine were detected in temporal cortex propagation areas. The presently reported heterogeneity of polyamine contents might contribute to modulate differentially the local control of excitability in human temporal epilepsy.
Polyamines modulate the neurotoxic effects of NMDA in vivo
Brain Research, 1993
The ability of polyamines to alter NMDA-induced neurotoxicity in neonatal rats was examined to determine whether polyamines modulate NMDA receptor activity in vivo. Unilateral injections of NMDA and/or polyamines were made into the striatum of 7-day-old rats. After 5 days, the brains were removed and 20/.~m thick coronal sections were cut and stained with Cresyl violet. A computer-based image analysis system was used to densitometrically measure the cross-sectional area of intact tissue in the control and injected hemispheres. Administration of NMDA (5-40 nmol) produced a dose-dependent tissue damage that ranged from 7 to 52% of the area of the uninjected hemisphere. The polyamine agonist spermine (10-500 nmol) dose-dependently exacerbated the toxicity of a 15 nmol dose of NMDA, increasing the size of the lesion by up to 50%. Administration of spermine alone produced dose-dependent tissue damage that ranged from 9 to 52%. The damage produced by both NMDA and spermine could be completely inhibited by co-administration of the NMDA antagonist MK-801. The polyamine inverse agonist 1,10-diaminodecane (DA-10, 50-400 nmol) inhibited the damage produced by NMDA in a dose-dependent manner, with a maximal inhibition of 50%. Administration of DA-10 alone produced limited damage at doses above 100 nmol. The weak partial agonist diethylenetriamine had no effect by itself or on NMDA-induced toxicity at the doses tested. These results indicate that polyamines can modulate the activity of NMDA receptors in vivo and suggest that polyamines or related compounds may have important therapeutic potential as neuroprotective agents.
Journal of Medical Biochemistry, 2007
Spermine and L-Name Pretreatment Effects on Polyamine and Nitric Oxide Metabolism in Rat Brain During SeizuresIn the CNS polyamines can exert opposite effects, depending on the concentration and conditions in the cell. Protective or neurotoxic polyamine effects were documented during seizures and repeated CNS excitation. Intensive research of exogenous polyamines effects during seizures induced by numerous agents did not clear up confusions about the duality of effects and the role of polyamines in seizures. In order to understand polyamine modulatory effects in seizures, the importance of NO and polyamine metabolism interdependence and the possible implication of changes of postulated NO and polyamine equillibrium in seizures, the effects of spermine alone and in combination with L-NAME (NOS inhibitor) on seizures induced by pentazol (PTZ) were investigated. To compare the obtained results, the effects of anticonvulsant midazolam on NO production during seizures were also investiga...
Polyamine uptake, binding and release in rat brain
European Journal of Pharmacology, 1991
The uptake, binding and release of the polyamines, spermidine and spermine, and of their diamine precursor, putrescine, were examined in synaptosomal preparations from rat hippocampus. The specific and relatively high-affinity uptake by synaptosomes was found only with putrescine (Vma ~ = 21.6 pmol/mg protein per h; K m = 28.6 nM) and not with the other polyamines. In contrast, specific binding to membranes was found for spermidine (Bma × = 28.6 pmol/mg protein; K a = 42.9 nM) and for spermine (Bma x = 156.3 pmol/mg protein; Ka = 83.3 nM), but not for putrescine. High potassium concentrations (35 mM) both induced the release of accumulated polyamines from synaptosomes and inhibited their binding. Specific polyamine binding evidently occurs selectively on the inner but not on the outer surface of synaptosomal membranes.
Mygalin: a new anticonvulsant polyamine in acute seizure model and neuroethological schedule
Central nervous system agents in medicinal chemistry, 2013
Polyamines are compounds that interact with ionotropic receptors, mainly modulating the NMDA receptor, which is strictly related to many neurologic diseases such as epilepsy. Consequently, polyamines rise as potential neuropharmacological tools in the prospection of new therapeutic drugs. In this paper, we report on the biological activity of synthetic polyamine Mygalin, which was tested as an anticonvulsant in model of chemically induced seizures. Male Wistar rats were injected with vehicle, diazepam, MK-801 or Mygalin at different doses followed by Pentylenetetrazole or N-Methyl-D-Aspartate administration. Mygalin presented protection against seizures induced by both NMDA injections and PTZ administration by 83.3% and 16.6%, respectively. Moreover, it prolonged the onset of tonic-clonic seizures induced by PTZ. Furthermore, it was tested in neuroethological schedule evaluating possible side-effects and it presented mild changes in Open Field, Rotarod and Morris Water Maze tests wh...
Journal of Neurochemistry, 1982
The biosynthesis of polyamines was investigated in the brains of the audiogenic seizure-susceptible (SS) mutant and the wild-type, seizure-resistant (SR) deermouse Perornystus maniculatus bairdii. For this purpose a new, rapid, and economical high pressure liquid chromatography (HPLC) procedure for the quantitation of putrescine, spermidine, and spermine was developed. Benzoyl derivatives of the polyamines, prepared from a crude brain supernatant, were ether extracted and, following removal of the ether, were separated and quantitated by HPLC. The high sensitivity of the method allows quantitation of putrescine in 50 mg and of spermidine and spermine, in as little as 2-2.5 mg, of brain tissue. No differences were found in endogenous levels of the 3 polyamines in brains of SS vs SR deermice. Using [14C]putrescine as a polyamine precursor, we found the specific radioactivity of spermidine to be lower in the SS than in the SR brains following a 1 h intraventricular (i.vt.) pulse. No such differences were noted if [3,4-'*C]methionine was used as the polyamine precursor. To test whether the flux of methionine through the transmethylation pathway was also different in SS and SR deermouse brain, we administered [I-"C]methionine (i.vt.) (1 h pulse). Even though the brains of SS animals contained higher methionine and lower S-adenosyl-L-methionine (AdoMet) levels than the SR brains, the specific radioactivities of methionine and AdoMet were, respectively, lower and higher in SS compared to SR brains. The latter results are in agreement with our previous findings of an accelerated utilization of AdoMet in brains of Swiss-Webster mice following administration of the chemical convulsant r-methionine-d.I-sulfoximine (MSO). Taken together, the data suggest that the SS condition, whether genetically determined (as in the SS deermouse) or chemically elicited (as after MSO), correlates positively with higher than normal rates of conversion of methionine to brain AdoMet and leads to an enhanced rate of utilization of AdoMet via the transmethylation pathway.