Magnetic reconnection in the solar atmosphere: from proposal to paradigm (original) (raw)
Related papers
Criticism of reconnection models of the magnetosphere
Planetary and Space Science, 1978
Reconnection involves singular lines called X-lines on the day and night sides of the magnetosphere, and the reconnection rate is proportional to the component of the electric field along the X-line. Although there is some indirect support for this model, nevertheless direct support is totally lacking. However, there are two distinct pieces of clearly contradictory observational evidence on the dayside. First is the failure to account for the implied energy dissipation by the magnetopause current, over 10" W, which should be easily observable as heating or enhanced flow of the plasma near the magnetopause. In marked contrast to this prediction, HEOS-2 satellite data reveal a plasma with decreased energy density and reduced flow. Second, the boundary of closed magnetic field lines is in the wrong location. In the reconnection process the plasma outflow would cut across open field lines toward higher latitudes; there should be a band of open field lines equatorward of the cleft. Observations of trapped energetic particles indicate closed field lines within the entry layer and cleft. Either one of these pieces of evidence is sufficient by itself to require drastic revision, even rejection, of the reconnection model. There is also contradictory evidence on the night side. The last closed field line capable of trapping energetic particles is poleward of aurora1 arcs. The implication is that the X-line is at the distant magnetopause, and not in the plasma sheet. Consequently, even if the reconnection process were operative at the nightside X-line, it would be isolated from steady state plasma sheet and aurora1 processes. On the other hand, substorm phenomena, in which stored magnetic energy is converted into particle kinetic energy, necessarily involve an induced electric field; that is excluded in theories of the reconnection process in which it is assumed that curl E = 0. Nevertheless, the observed easy access of energetic solar flare particles to the polar caps, and especially the preservation of interplanetary anisotropies as differences between the two polar caps, argues strongly for an open magnetosphere, with interconnection between geomagnetic and interplanetary magnetic field lines. It is suggested that the resolution of this apparent paradox involves electric fields parallel to the magnetic field lines somewhere on the dawn and dusk sides of the magnetosphere, with an equipotential dayside magnetopause.
Evidence for magnetic reconnection initiated in the magnetosheath
Geophysical Research Letters, 2007
1] We report Cluster spacecraft 1 observations of a reconnection exhaust embedded in the magnetosheath flow. The reconnection evidence consists of (1) accelerated plasma outflows, (2) interpenetrating ion beams, (3) reconnection inflows and (4) the associated tangential reconnection electric field. Furthermore, Hall magnetic fields were observed with no gaps in the middle of the exhaust. Together with the exhaust thickness being $ 10 ion skin depths, this implies that the spacecraft crossed through the ion diffusion region. The dimensionless reconnection rate determined independently using the plasma and electric field measurements was $0.07, implying fast reconnection. The same (but 36 times thicker) current sheet was observed upstream in the solar wind by the ACE and Wind spacecraft but without the reconnection signatures. These observations suggest that reconnection was initiated in the magnetosheath due to compression of the (non-reconnecting) solar wind current sheet at the bow shock and against the dayside magnetopause. Citation: Phan, T.
Magnetic reconnection signatures in the solar atmosphere: results from multi-wavelength observations
2011
In the solar atmosphere magnetic reconnection is invoked as the main mechanism causing very energetic events (1028 - 1032 erg), like flares and coronal mass ejections, as well as other less energetic phenomena, like microflares, X-ray jets and chromospheric surges. In the last decade, thanks to high spatial resolution, multi-wavelength observations carried out by both ground-based telescopes (THEMIS, SST, VTT, DST) and space-born satellites (SOHO, TRACE, RHESSI, HINODE), it has been possible to study these phenomena and several signatures of the occurrence of magnetic reconnection have been singled out. In this paper, we describe some results obtained from the analysis of multi-wavelength observations carried out in the last years, with special emphasis on those events that were characterized by plasma outflows from the reconnection site. The events here discussed are relevant to some active regions observed on the Sun, characterized by the interaction of different bundles of magnet...
Chromospheric evidence for magnetic reconnection
Astronomy & Astrophysics, 1997
We study the decay phase of an M2.6 flare, observed with ground based instruments at NSO/Sac Peak and with the cluster of instruments onboard Yohkoh. The whole set of chromospheric and coronal data gives a picture consistent with the classical Kopp-Pneuman model of two-ribbon flares. We clearly witness new episodes of coronal energy release, most probably due to magnetic reconnection,
Magnetic Reconnection Phenomena in Interplanetary Space
Advances in Space Environment Research - Volume I, 2003
Interplanetary magnetic reconnection(IMR) phenomena are explored based on the observational data with various time resolutions from Helios, IMP-8, ISEE3, Wind, etc. We discover that the observational evidence of the magnetic reconnection may be found in the various solar wind structures, such as at the boundary of magnetic cloud, near the current sheet, and small-scale turbulence structures, etc. We have developed a third order accuracy upwind compact difference scheme to numerically study the magnetic reconnection phenomena with high-magnetic Reynolds number (R M = 2000 -10000) in interplanetary space. The simulated results show that the magnetic reconnection process could occur under the typical interplanetary conditions. These obtained magnetic reconnection processes own basic characteristics of the high R M reconnection in interplanetary space, including multiple X-line reconnection, vortex velocity structures, filament current systems, splitting, collapse of plasma bulk, merging and evolving of magnetic islands, and lifetime in the range from minutes to hours, etc. These results could be helpful for further understanding the interplanetary basic physical processes.
Magnetic Reconnection in Astrophysical Environments
Astrophysics and Space Science Library, 2014
Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Traditionally, magnetic reconnection was associated mostly with solar flares. In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen in field lines and magnetic reconnection. We consider magnetic reconnection in realistic 3D geometry in the presence of turbulence. This turbulence in most astrophysical settings is of pre-existing nature, but it also can be induced by magnetic reconnection itself. In this situation turbulent magnetic field wandering opens up reconnection outflow regions, making reconnection fast. We discuss Lazarian & Vishniac (1999) model of turbulent reconnection, its numerical and observational testings, as well as its connection to the modern understanding of the Lagrangian properties of turbulent fluids. We show that the predicted dependences of the reconnection rates on the level of MHD turbulence make the generally accepted Goldreich & Sridhar (1995) model of turbulence self-consistent. Similarly, we argue that the well-known Alfvén theorem on flux freezing is not valid for the turbulent fluids and therefore magnetic fields diffuse within turbulent volumes. This is an element of magnetic field dynamics that was not accounted by earlier theories. For instance, the theory of star formation that was developing assuming that it is
The Astrophysical Journal, 2010
Magnetic reconnection is a process in which field-line connectivity changes in a magnetized plasma. On the solar surface, it often occurs with the cancellation of two magnetic fragments of opposite polarity. Using the 1.6 meter New Solar Telescope, we observed the morphology and dynamics of plasma visible in the Hα line, which is associated with a cancelling magnetic feature in the quiet Sun. The region can be divided into four magnetic domains: two pre-reconnection and two post-reconnection. In one post-reconnection domain, a small cloud erupted, with a plane-of-sky speed of 10 kilometers per second, while in the other one, brightening began at points and then tiny bright loops appeared and subsequently shrank. These features support the notion that magnetic reconnection taking place in the chromosphere is responsible for canceling magnetic features.
Magnetic reconnection, merging, and viscous interaction in the magnetosphere
Space Science Reviews, 1990
Two ideas were advanced for the process of solar wind-magnetospheric interaction in the same year 1961. Dungey suggested that the interplanetary magnetic field (IMF), although weak, might determine the nature of this process by magnetic reconnection as the solar wind plasma flows across the separatrix surface which divides the IMF from the geomagnetic field. Axford and Hines pointed out that the flow inside the magnetopause is in the same sense as the magnetosheath flow and appears to be viscously coupled. Within a few years the dependence of geomagnetic activity on the IMF predicted by Dungey's mechanism was observed, and reconnection began to dominate current theories. One difficulty, that of the implied dissipation at the magnetopause, was troublesome; however, the ISEE-1/2 observations of the predicted high speed flows on several occasions was enough to convince many persons that reconnection ideas were basically correct. Several investigators found some evidence in the ISEE-3 data in the distant magnetotail for the steady-state reconnection line, as demanded by the Dungey model, in the form of a southward sense of the magnetic field through the current sheet. Here, again, there is some hard contrary evidence when the data are analyzed exactly at the cross-tail current sheet: the instantaneous values show a northward sense, even at high values of auroral activity. Coupled with the anti-Sunward plasma flow, this repudiates the steady-state Dungey model. On the other hand, it lends strong support to some kind of viscous effect through the medium of the magnetospheric boundary layer. This is not a semantic problem, as the sense of the electric field (as well as the magnetic field) is opposite for the two cases. The downfall of the reconnection model is its implicit use of frozen-field convection; this problem is obvious when the problem is viewed in three dimensions. Instead, the view is taken that the relevant process must be essentially time-dependent, three-dimensional, and localized. It is proposed that the term merging be used for this generalized timedependent form of reconnection. The merging process (whatever it is) must permit solar wind plasma to cross the magnetopause onto closed field lines of the boundary layer. Once it is there, it provides the viscous-like effect that Axford and Hines had envisaged.