Development of human motion prediction strategy using inception residual block (original) (raw)

MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction

2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021

Human motion prediction is a challenging task due to the stochasticity and aperiodicity of future poses. Recently, graph convolutional network has been proven to be very effective to learn dynamic relations among pose joints, which is helpful for pose prediction. On the other hand, one can abstract a human pose recursively to obtain a set of poses at multiple scales. With the increase of the abstraction level, the motion of the pose becomes more stable, which benefits pose prediction too. In this paper, we propose a novel Multi-Scale Residual Graph Convolution Network (MSR-GCN) for human pose prediction task in the manner of end-to-end. The GCNs are used to extract features from fine to coarse scale and then from coarse to fine scale. The extracted features at each scale are then combined and decoded to obtain the residuals between the input and target poses. Intermediate supervisions are imposed on all the predicted poses, which enforces the network to learn more representative features. Our proposed approach is evaluated on two standard benchmark datasets, i.e., the Human3.6M dataset and the CMU Mocap dataset. Experimental results demonstrate that our method outperforms the state-of-the-art approaches. Code and pre-trained models are available at https://github.com/Droliven/MSRGCN.

Space-Time-Separable Graph Convolutional Network for Pose Forecasting

ArXiv, 2021

Human pose forecasting is a complex structured-data sequence-modelling task, which has received increasing attention, also due to numerous potential applications. Research has mainly addressed the temporal dimension as time series and the interaction of human body joints with a kinematic tree or by a graph. This has decoupled the two aspects and leveraged progress from the relevant fields, but it has also limited the understanding of the complex structural joint spatio-temporal dynamics of the human pose. Here we propose a novel Space-Time-Separable Graph Convolutional Network (STS-GCN) for pose forecasting. For the first time, STS-GCN models the human pose dynamics only with a graph convolutional network (GCN), including the temporal evolution and the spatial joint interaction within a single-graph framework, which allows the cross-talk of motion and spatial correlations. Concurrently, STS-GCN is the first space-time-separable GCN: the space-time graph connectivity is factored into...

Learning Trajectory Dependencies for Human Motion Prediction

2019 IEEE/CVF International Conference on Computer Vision (ICCV)

Human motion prediction, i.e., forecasting future body poses given observed pose sequence, has typically been tackled with recurrent neural networks (RNNs). However, as evidenced by prior work, the resulted RNN models suffer from prediction errors accumulation, leading to undesired discontinuities in motion prediction. In this paper, we propose a simple feed-forward deep network for motion prediction, which takes into account both temporal smoothness and spatial dependencies among human body joints. In this context, we then propose to encode temporal information by working in trajectory space, instead of the traditionallyused pose space. This alleviates us from manually defining the range of temporal dependencies (or temporal convolutional filter size, as done in previous work). Moreover, spatial dependency of human pose is encoded by treating a human pose as a generic graph (rather than a human skeletal kinematic tree) formed by links between every pair of body joints. Instead of using a pre-defined graph structure, we design a new graph convolutional network to learn graph connectivity automatically. This allows the network to capture long range dependencies beyond that of human kinematic tree. We evaluate our approach on several standard benchmark datasets for motion prediction, including Human3.6M, the CMU motion capture dataset and 3DPW. Our experiments clearly demonstrate that the proposed approach achieves state of the art performance, and is applicable to both angle-based and position-based pose representations. The code is available at https: //github.com/wei-mao-2019/LearnTrajDep

Convolutional Pose Machines

Pose Machines provide a sequential prediction framework for learning rich implicit spatial models. In this work we show a systematic design for how convolutional networks can be incorporated into the pose machine framework for learning image features and image-dependent spatial models for the task of pose estimation. The contribution of this paper is to implicitly model long-range dependencies between variables in structured prediction tasks such as articulated pose estimation. We achieve this by designing a sequential architecture composed of convolutional networks that directly operate on belief maps from previous stages, producing increasingly refined estimates for part locations , without the need for explicit graphical model-style inference. Our approach addresses the characteristic difficulty of vanishing gradients during training by providing a natural learning objective function that enforces intermediate supervision, thereby replenishing back-propagated gradients and conditioning the learning procedure. We demonstrate state-of-the-art performance and outperform competing methods on standard benchmarks including the MPII, LSP, and FLIC datasets.

Learning Dynamics via Graph Neural Networks for Human Pose Estimation and Tracking

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Multi-person pose estimation and tracking serve as crucial steps for video understanding. Most state-of-the-art approaches rely on first estimating poses in each frame and only then implementing data association and refinement. Despite the promising results achieved, such a strategy is inevitably prone to missed detections especially in heavilycluttered scenes, since this tracking-by-detection paradigm is, by nature, largely dependent on visual evidences that are absent in the case of occlusion. In this paper, we propose a novel online approach to learning the pose dynamics, which are independent of pose detections in current fame, and hence may serve as a robust estimation even in challenging scenarios including occlusion. Specifically, we derive this prediction of dynamics through a graph neural network (GNN) that explicitly accounts for both spatialtemporal and visual information. It takes as input the historical pose tracklets and directly predicts the corresponding poses in the following frame for each tracklet. The predicted poses will then be aggregated with the detected poses, if any, at the same frame so as to produce the final pose, potentially recovering the occluded joints missed by the estimator. Experiments on PoseTrack 2017 and Pose-Track 2018 datasets demonstrate that the proposed method achieves results superior to the state of the art on both human pose estimation and tracking tasks.

A Graph Attention Spatio-temporal Convolutional Network for 3D Human Pose Estimation in Video

2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

Spatio-temporal information is key to resolve occlusion and depth ambiguity in 3D pose estimation. Previous methods have focused on either temporal contexts or localto-global architectures that embed fixed-length spatio-temporal information. To date, there have not been effective proposals to simultaneously and flexibly capture varying spatio-temporal sequences and effectively achieves real-time 3D pose estimation. In this work, we improve the learning of kinematic constraints in the human skeleton: posture, local kinematic connections, and symmetry by modeling local and global spatial information via attention mechanisms. To adapt to single-and multiframe estimation, the dilated temporal model is employed to process varying skeleton sequences. Also, importantly, we carefully design the interleaving of spatial semantics with temporal dependencies to achieve a synergistic effect. To this end, we propose a simple yet effective graph attention spatiotemporal convolutional network (GAST-Net) that comprises of interleaved temporal convolutional and graph attention blocks. Experiments on two challenging benchmark datasets (Human3.6M and HumanEva-I) and YouTube videos demonstrate that our approach effectively mitigates depth ambiguity and self-occlusion, generalizes to half upper body estimation, and achieves competitive performance on 2D-to-3D video pose estimation. Code, video, and supplementary information is

Learning Human Pose Estimation Features with Convolutional Networks

This paper introduces a new architecture for human pose estimation using a multilayer convolutional network architecture and a modified learning technique that learns low-level features and a higher-level weak spatial model. Unconstrained human pose estimation is one of the hardest problems in computer vision, and our new architecture and learning schema shows significant improvement over the current state-of-the-art. The main contribution of this paper is showing, for the first time, that a specific variation of deep learning is able to outperform all existing traditional architectures on this task. The paper also discusses several lessons learned while researching alternatives, most notably, that it is possible to learn strong low-level feature detectors on features that might even just cover a few pixels in the image. Higher-level spatial models improve somewhat the overall result, but to a much lesser extent than expected. Many researchers previously argued that the kinematic structure and top-down information are crucial for this domain, but with our purely bottom-up, and weak spatial model, we could improve on other more complicated architectures that currently produce the best results. This mirrors what many other researchers, like those in the speech recognition, object recognition, and other domains have experienced . Figure 1: The green cross is our new technique's wrist locator, the red cross is the state-of-the-art CVPR13 MODEC detector [36] on the FLIC database.

ProtoRes: Proto-Residual Architecture for Deep Modeling of Human Pose

arXiv (Cornell University), 2021

Our work focuses on the development of a learnable neural representation of human pose for advanced AI assisted animation tooling. Specifically, we tackle the problem of constructing a full static human pose based on sparse and variable user inputs (e.g. locations and/or orientations of a subset of body joints). To solve this problem, we propose a novel neural architecture that combines residual connections with prototype encoding of a partially specified pose to create a new complete pose from the learned latent space. We show that our architecture outperforms a baseline based on Transformer, both in terms of accuracy and computational efficiency. Additionally, we develop a user interface to integrate our neural model in Unity, a real-time 3D development platform. Furthermore, we introduce two new datasets representing the static human pose modeling problem, based on high-quality human motion capture data. Our code is publically available here: https://github.com/boreshkinai/protores.

Skeletal Movement to Color Map: A Novel Representation for 3D Action Recognition with Inception Residual Networks

arXiv (Cornell University), 2018

We propose a novel skeleton-based representation for 3D action recognition in videos using Deep Convolutional Neural Networks (D-CNNs). Two key issues have been addressed: First, how to construct a robust representation that easily captures the spatial-temporal evolutions of motions from skeleton sequences. Second, how to design D-CNNs capable of learning discriminative features from the new representation in a effective manner. To address these tasks, a skeletonbased representation, namely, SPMF (Skeleton Pose-Motion Feature) is proposed. The SPMFs are built from two of the most important properties of a human action: postures and their motions. Therefore, they are able to effectively represent complex actions. For learning and recognition tasks, we design and optimize new D-CNNs based on the idea of Inception Residual networks to predict actions from SPMFs. Our method is evaluated on two challenging datasets including MSR Action3D and NTU-RGB+D. Experimental results indicated that the proposed method surpasses state-of-the-art methods whilst requiring less computation.

Learning Latent Representations of 3D Human Pose with Deep Neural Networks

Most recent approaches to monocular 3D pose estimation rely on Deep Learning. They either train a Convolutional Neural Network to directly regress from an image to a 3D pose, which ignores the dependencies between human joints, or model these dependencies via a max-margin structured learning framework, which involves a high computational cost at inference time. In this paper, we introduce a Deep Learning regression architecture for structured prediction of 3D human pose from monocular images or 2D joint location heatmaps that relies on an overcomplete autoencoder to learn a high-dimensional latent pose representation and accounts for joint dependencies. We further propose an efficient Long Short-Term Memory (LSTM) network to enforce temporal consistency on 3D pose predictions. We demonstrate that our approach achieves state-of-the-art performance both in terms of structure preservation and prediction accuracy on standard 3D human pose estimation benchmarks.