An Aspartate-Specific Solute-Binding Protein Regulates Protein Kinase G Activity To Control Glutamate Metabolism in Mycobacteria (original) (raw)

Regulation of glutamate metabolism by protein kinases in mycobacteria

Molecular Microbiology, 2008

Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit a-ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD + -specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence.

The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo

Molecular Microbiology, 2004

The function of the Mycobacterium tuberculosis eukaryotic-like protein serine/threonine kinase PknG was investigated by gene knock-out and by expression and biochemical analysis. The pkn G gene (Rv0410c), when cloned and expressed in Escherichia coli , encodes a functional kinase. An in vitro kinase assay of the recombinant protein demonstrated that PknG can autophosphorylate its kinase domain as well as its 30 kDa C-terminal portion, which contains a tetratricopeptide (TPR) structural signalling motif. Western analysis revealed that PknG is located in the cytosol as well as in mycobacterial membrane. The pkn G gene was inactivated by allelic exchange in M. tuberculosis. The resulting mutant strain causes delayed mortality in SCID mice and displays decreased viability both in vitro and upon infection of BALB/c mice. The reduced growth of the mutant was more pronounced in the stationary phase of the mycobacterial growth cycle and when grown in nutrient-depleted media. The PknG-deficient mutant accumulates glutamate and glutamine. The cellular levels of these two amino acids reached approximately threefold of their parental strain levels. Higher cellular levels of the amine sugar-containing molecules, GlcN-Ins and mycothiol, which are derived from glutamate, were detected in the D D D D pknG mutant. De novo glutamine synthesis was shown to be reduced by 50%. This is consistent with current knowledge suggesting that glutamine synthesis is regulated by glutamate and glutamine levels. These data support our hypothesis that PknG mediates the transfer of signals sensing nutritional stress in M. tuberculosis and translates them into metabolic adaptation.

Role of Protein Kinase G in Growth and Glutamine Metabolism of Mycobacterium bovis BCG

Journal of Bacteriology, 2005

The survival of pathogenic mycobacteria in macrophages requires the eukaryotic enzyme-like serine/threonine protein kinase G. This kinase with unknown specificity is secreted into the cytosol of infected macrophages and inhibits phagosome-lysosome fusion. The pknG gene is the terminal gene in a putative operon containing glnH, encoding a protein potentially involved in glutamine uptake. Here, we report that the deletion of pknG did not affect either glutamine uptake or intracellular glutamine concentrations. In vitro growth of Mycobacterium bovis BCG lacking pknG was identical to that of the wild type. We conclude that in M. bovis BCG, glutamine metabolism is not regulated by protein kinase G.

A new subfamily of bacterial glutamate/aspartate receptors

Biological Chemistry, 2008

The specificity of bacterial nutrient importers of the ATP-binding cassette (ABC) type depends on external receptor proteins that not only bind the solute to be transported, but also initiate the transport process by inducing ATP hydrolysis in the cytoplasmic nucleotide-binding domains. Here we propose a mode of ligand binding to the solute-binding protein AatJ that is required for glutamate uptake by the AatJMQP transporter in Pseudomonas putida KT2440. A homology model of the AatJ-glutamate complex was constructed using the E. coli glutamine-binding protein GlnH as the template. The general validity of the model was then confirmed by alanine scanning mutagenesis of several residues predicted to interact with the ligand and by semi-quantitative binding studies with [14C]-Glu and [14C]-Asp. A database search indicated that AatJ is a member of a distinct subfamily of the family 3 solute-binding proteins with specificity towards glutamate and aspartate.

New substrates and interactors of the mycobacterial Serine/Threonine protein kinase PknG identified by a tailored interactomic approach

Journal of proteomics, 2018

PknG from Mycobacterium tuberculosis is a multidomain Serine/Threonine protein kinase that regulates bacterial metabolism as well as the pathogen's ability to survive inside the host by still uncertain mechanisms. To uncover PknG interactome we developed an affinity purification-mass spectrometry strategy to stepwise recover PknG substrates and interactors; and to identify those involving PknG autophosphorylated docking sites. We report a confident list of 7 new putative substrates and 66 direct or indirect partners indicating that PknG regulates many physiological processes, such as nitrogen and energy metabolism, cell wall synthesis and protein translation. GarA and the 50S ribosomal protein L13, two previously reported substrates of PknG, were recovered in our interactome. Comparative proteome analyses of wild type and pknG null mutant M. tuberculosis strains provided evidence that two kinase interactors, the FHA-domain containing protein GarA and the enzyme glutamine synthet...

Regulation of Glutamine and Glutamate Metabolism by GlnR and GlnA in Streptococcus pneumoniae

Journal of Biological Chemistry, 2006

Several genes involved in nitrogen metabolism are known to contribute to the virulence of pathogenic bacteria. Here, we studied the function of the nitrogen regulatory protein GlnR in the Gram-positive human pathogen Streptococcus pneumoniae. We demonstrate that GlnR mediates transcriptional repression of genes involved in glutamine synthesis and uptake (glnA and glnPQ), glutamate synthesis (gdhA), and the gene encoding the pentose phosphate pathway enzyme Zwf, which forms an operon with glnPQ. Moreover, the expression of gdhA is also repressed by the pleiotropic regulator CodY. The GlnR-dependent regulation occurs through a conserved operator sequence and is responsive to the concentration of glutamate, glutamine, and ammonium in the growth medium. By means of in vitro binding studies and transcriptional analyses, we show that the regulatory function of GlnR is dependent on GlnA. Mutants of glnA and glnP displayed significantly reduced adhesion to Detroit 562 human pharyngeal epithelial cells, suggesting a role for these genes in the colonization of the host by S. pneumoniae. Thus, our results provide a thorough insight into the regulation of glutamine and glutamate metabolism of S. pneumoniae mediated by both GlnR and GlnA.

Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity

Bioscience Reports, 2017

Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr 101 and Thr 169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr 169 compared with Thr 101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr 169 might affect its interaction with Arg 166 , which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr 169 , the interactions of Arg 165 /Arg 166 with Glu 158 , Asp 121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.

Poly-L-glutamate/glutamine synthesis in the cell wall of Mycobacterium bovis is regulated in response to nitrogen availability

BMC Microbiology, 2013

Background: The cell wall of pathogenic mycobacteria is known to possess poly-L-glutamine (PLG) layer. PLG synthesis has been directly linked to glutamine synthetase (GS) enzyme. glnA1 gene encodes for GS enzyme in mycobacteria. PLG layer is absent in cell wall of avirulent Mycobacterium smegmatis, although M. smegmatis strain expressing GS enzyme of pathogenic mycobacteria can synthesize PLG layer in the cell wall. The role of GS enzyme has been extensively studied in Mycobacterium tuberculosis, however, little is known about GS enzyme in other mycobacterial species. Mycobacterium bovis, as an intracellular pathogen encounters nitrogen stress inside macrophages, thus it has developed nitrogen assimilatory pathways to survive in adverse conditions. We have investigated the expression and activity of M. bovis GS in response to nitrogen availability and effect on synthesis of PLG layer in the cell wall. M. smegmatis was used as a model to study the behaviour of glnA1 locus of M. bovis. Results: We observed that GS expression and activity decreased significantly in high nitrogen grown conditions. In high nitrogen conditions, the amount of PLG in cell wall was drastically reduced (below detectable limits) as compared to low nitrogen condition in M. bovis and in M. smegmatis strain complemented with M. bovis glnA1. Additionally, biofilm formation by M. smegmatis strain complemented with M. bovis glnA1 was increased than the wild type M. smegmatis strain. Conclusions: The physiological regulation of GS in M. bovis was found to be similar to that reported in other mycobacteria but this data revealed that PLG synthesis in the cell wall of pathogenic mycobacteria occurs only in nitrogen limiting conditions and on the contrary high nitrogen conditions inhibit PLG synthesis. This indicates that PLG synthesis may be a form of nitrogen assimilatory pathway during ammonium starvation in virulent mycobacteria. Also, we have found that M. smegmatis complemented with M. bovis glnA1 was more efficient in biofilm formation than the wild type strain. This indicates that PLG layer favors biofilm formation. This study demonstrate that the nitrogen availability not only regulates GS expression and activity in M. bovis but also affects cell surface properties by modulating synthesis of PLG.

Phosphorylation of pyruvate kinase A by protein kinase J leads to the altered growth and differential rate of intracellular survival of mycobacteria

Applied Microbiology and Biotechnology, 2014

PknJ (Rv2088) is a serine/threonine protein kinase of mycobacteria which is present in Mycobacterium tuberculosis (MTB), but its gene is absent in Mycobacterium smegmatis (MS); a fast grower and nonpathogenic species of mycobacteria. The heterologous expression of MTB-specific PknJ in MS altered the growth of recombinant mycobacteria highlighting one of the characteristics of this protein. This nature of the protein was further confirmed when Mycobacterium bovis BCG (BCG) containing antisense copy of pknJ resulted in the increased growth of BCG. The real-time RNA quantification analysis pointed out toward increased expression of this protein during infection of THP-1 macrophage cells which further emphasized that the protein is essential for the intracellular survival of mycobacteria. The differential in gel electrophoresis (DIGE) data followed by mass spectroscopy suggested that PknJ is involved in regulation of pyruvate kinase A (Rv1617). Since pyruvate kinase (PK) A is one of the key enzymes which controls glycolytic cycle in mycobacteria, we looked for its interaction with PknJ during extracellular and intracellular growth of mycobacteria. In order to identify the specific residue(s) involved in posttranslational modification, the phospho-null mutants of PK were generated, and their substrate specificities in response to PknJ were assessed through kinase assay. The findings thus underlined that the PK activity is predominantly dependent on the threonine residue at the 94 th position and further suggested that this site may be plausible in intracellular survival of mycobacteria upon phosphorylation with PknJ.