Circulating microRNA-194 and microRNA-1228 Could Predict Colon Cancer Proliferation via Phospho S6 Modulation (original) (raw)

Regulation of microRNA‐1288 in colorectal cancer: Altered expression and its clinicopathological significance

We aim to examine the miR-1288 expression in cancer cell lines and a large cohort of patients with colorectal cancer. Two colon cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The miRNA expressions of miR-1288 were tested on these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). An exogenous miR-1288 (mimic) was used to detect cell proliferation and cell cycle changes in SW480 using MTT calorimetric assay and flow cytometry, respectively. In addition, tissues from 122 patients with surgical resection of colorectum (82 adenocarcinomas, 20 adenomas, and 20 non-neoplastic tissues) were tested for miR-1288 expression by qRT-PCR. The colon cancer cell lines showed reduced expression of miR-1288 compared to normal colonic epithelial cell line. Over expression of miR-1288 in SW480 cell line showed increased cell proliferation and increased G2-M phase cells. In tissues, reduced miR-1288 expression was noted in majority of colorectal adenocarcinoma compared to colorectal adenoma and non-neoplastic tissues. Reduced or absent expression of miR-1288 was noted in 76% (n ¼ 62/82) of the cancers. The expression levels of miR-1288 were higher in distal colorectal adenocarcinomas (P ¼ 0.013) and in cancers of lower T staging (P ¼ 0.033). To conclude, alternation of miR-1288 expression is important in the progression of colorectal cancer. The differential regulation of miR-1288 was found to be related to cancer location and pathological staging in colorectal cancers. ß

Diagnostic and Prognostic MicroRNAs in Stage II Colon Cancer

2008

MicroRNAs (miRNA) are a class of small noncoding RNAs with important posttranscriptional regulatory functions. Recent data suggest that miRNAs are aberrantly expressed in many human cancers and that they may play significant roles in carcinogenesis. Here, we used microarrays to profile the expression of 315 human miRNAs in 10 normal mucosa samples and 49 stage II colon cancers differing with regard to microsatellite status and recurrence of disease. Several miRNAs were differentially expressed between normal tissue and tumor microsatellite subtypes, with miR-145 showing the lowest expression in cancer relative to normal tissue. Microsatellite status for the majority of cancers could be correctly predicted based on miRNA expression profiles. Furthermore, a biomarker based on miRNA expression profiles could predict recurrence of disease with an overall performance accuracy of 81%, indicating a potential role of miRNAs in determining tumor aggressiveness. The expression levels of miR-320 and miR-498, both included in the predictive biomarker, correlated with the probability of recurrence-free survival by multivariate analysis. We successfully verified the expression of selected miRNAs using real-time reverse transcription-PCR assays for mature miRNAs, whereas in situ hybridization was used to detect the accumulation of miR-145 and miR-320 in normal epithelial cells and adenocarcinoma cells. Functional studies showed that miR-145 potently suppressed growth of three different colon carcinoma cell lines. In conclusion, our results suggest that perturbed expression of numerous miRNAs in colon cancer may have a functional effect on tumor cell behavior, and, furthermore, that some miRNAs with prognostic potential could be of clinical importance. [Cancer Res 2008;68(15):6416-24]

Identification of serum microRNA profiles in colon cancer

British journal of cancer, 2013

microRNAs (miRNAs) exist in blood in an apparently stable form. We have explored whether serum miRNAs can be used as non-invasive early biomarkers of colon cancer. Serum samples from 30 patients with colon cancer stage IV and 10 healthy controls were examined for the expression of 375 cancer-relevant miRNAs. Based on the miRNA profile in this study, 34 selected miRNAs were measured in serum from 40 patients with stage I-II colon cancer and from 10 additional controls. Twenty miRNAs were differentially expressed in serum from stage IV patients compared with controls (P<0.01). Unsupervised clustering revealed four subgroups; one corresponding mostly to the control group and the three others to the patient groups. Of the 34 miRNAs measured in the follow-up study of stage I-II patients, 21 showed concordant expression between stage IV and stage I-II patient. Based on the profiles of these 21 miRNAs, a supervised linear regression analysis (Partial Least Squares Regression) was perfor...

Recurrence of Early Stage Colon Cancer Predicted by Expression Pattern of Circulating microRNAs

PLoS ONE, 2014

Systemic treatment of patients with early-stage cancers attempts to eradicate occult metastatic disease to prevent recurrence and increased morbidity. However, prediction of recurrence from an analysis of the primary tumor is limited because disseminated cancer cells only represent a small subset of the primary lesion. Here we analyze the expression of circulating microRNAs (miRs) in serum obtained pre-surgically from patients with early stage colorectal cancers. Groups of five patients with and without disease recurrence were used to identify an informative panel of circulating miRs using quantitative PCR of genome-wide miR expression as well as a set of published candidate miRs. A panel of six informative miRs (miR-15a, mir-103, miR-148a, miR-320a, miR-451, miR-596) was derived from this analysis and evaluated in a separate validation set of thirty patients. Hierarchical clustering of the expression levels of these six circulating miRs and Kaplan-Meier analysis showed that the risk of disease recurrence of early stage colon cancer can be predicted by this panel of miRs that are measurable in the circulation at the time of diagnosis (P = 0.0026; Hazard Ratio 5.4; 95% CI of 1.9 to 15).

The prognostic value of microRNA-126 and microvessel density in patients with stage II colon cancer: results from a population cohort

Journal of Translational Medicine

Background Angiogenesis plays a pivotal role in malignant tumour growth and the metastatic process. We analysed the prognostic value of two angiogenesis parameters, microRNA-126 (miRNA-126) and microvessel density (MVD), in a population based cohort of patients operated for stage II colon cancer.MethodsA total of 560 patients were included. Analyses were performed on formalin fixed paraffin embedded tissue from the primary tumours. The analysis of miRNA-126 expression was performed by qPCR. Microvessels were visualised by CD105 and quantified in hot spots using a light microscope. The analyses were correlated with recurrence-free cancer specific survival (RF-CSS) and overall survival (OS).ResultsLow miRNA-126 expression was significantly correlated to T4, high malignancy grade, tumour perforation, fixation, and the presence of microsatellite instability. A prognostic impact on OS was detected in the simple analysis favouring patients with high miRNA-126 expression p¿=¿0.03, and bord...

Identification of a sixteen-microRNA signature as prognostic biomarker for stage II and III colon cancer

Oncotarget, 2017

Despite advances in colon cancer research and novel therapies, high risk of recurrence remains a major challenge. This study reports miRNA expression profiling as a biomarker for the prognosis of TNM stage II and III colon cancer. Fresh frozen biopsies from the study cohort (N=111) were analyzed for miRNA by RT-qPCR and LASSO regression analysis was used to build a classifier of miRNAs. The prognostic accuracy was tested and the classifier was validated in an independent colon cohort (TCGA-COAD, N=209). The LASSO regression analysis identified a 16-miRNA signature including miR-143-5p, miR-27a-3p, miR-31-5p, miR-181a-5p, miR-30b-5p, miR-30d-5p, miR-146a-5p, miR-23a-3p, miR-150-5p, miR-210-3p, miR-25-3p, miR-196a-5p, miR-148a-3p, miR-222-3p, miR-30c-5p and miR-223-3p. A low 16-miRNA signature was associated with better 5-year disease-free survival (DFS) in the study cohort than a high signature (93 % versus 58 %; p< 0.001). The signature was an independent prognostic factor for better 5-year DFS in multivariate analyses (HR 21.4; 95% CI: 4.21-108.7; p< 0.001). The results in the validation cohort were consistent with the study cohort in univariate (77 % versus 65 %; p= 0.045) and multivariate analyses (HR 2.0; 95% CI: 1.04-3.89; p=0.039). We identified a 16-miRNA signature as a reliable prognostic biomarker for classification of colon cancer stage II and III patients into groups with low and high risk for recurrence.

Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues

Molecular Cancer, 2006

MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Although the number of verified human miRNA is still expanding, only few have been functionally described. However, emerging evidences suggest the potential involvement of altered regulation of miRNA in pathogenesis of cancers and these genes are thought to function as both tumours suppressor and oncogenes. In our study, we examined by Real-Time PCR the expression of 156 mature miRNA in colorectal cancer. The analysis by several bioinformatics algorithms of colorectal tumours and adjacent non-neoplastic tissues from patients and colorectal cancer cell lines allowed identifying a group of 13 miRNA whose expression is significantly altered in this tumor. The most significantly deregulated miRNA being miR-31, miR-96, miR-133b, miR-135b, miR-145, and miR-183. In addition, the expression level of miR-31 was correlated with the stage of CRC tumor. Our results suggest that miRNA expression profile could have relevance to the biological and clinical behavior of colorectal neoplasia.

MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor

Experimental cell research, 2017

The role and underlying mechanism of miR-186-5p in colorectal cancer remain unknown. The present study aims to examine the various cellular effects of miR-186-5p in the carcinogenesis of colorectal cancer. Also, the interacting targets and association of clinicopathological factors with miR-186-5p expression in patients with colorectal cancer were analysed. The miR-186-5p expression levels in colorectal cancer tissues (n=126) and colon cancer cell lines (n=3) were analysed by real-time PCR. Matched non-neoplastic colorectal tissues and a non-neoplastic colonic epithelial cell line were used as controls. Various in vitro assays such as cell proliferation, wound healing and colony formation assays were performed to examine the miR-186-5p specific cellular effects. Western blots and immunohistochemistry analysis were performed to examine the modulation of FAM134B, PARP9 and KLF7 proteins expression. Significant high expression of miR-186-5p was noted in cancer tissues (p< 0.001) and...

MicroRNA-645 is an oncogenic regulator in colon cancer

Oncogenesis, 2017

Despite advances in early diagnosis and the development of molecularly targeted therapy, curative treatment of colon cancer once it has metastasized is yet to be accomplished. This is closely associated with deregulated CRC cell proliferation and resistance to apoptosis. Here we reveal that upregulation of microRNA-645 (miR-645) through DNA copy number gain is responsible for enhanced proliferation and resistance to apoptosis in colon cancer. MiR-645 was upregulated in most colon cancer tissues related to adjacent normal mucosa. This appeared to be associated with amplification of a section of chromosome 20q13.13, where miR-645 is located. Inhibition of miR-645 reduced proliferation and enhanced sensitivity to apoptosis triggered by the chemotherapeutic drugs 5-fluorouracil and cisplatin in CRC cells, and retarded colon cancer xenograft growth. Conversely, overexpression of miR-645 in normal colon epithelial cells enhanced proliferation and triggered anchorage-independent cell growt...