Structural basis for breadth development in the HIV-1 V3-glycan targeting DH270 antibody clonal lineage (original) (raw)

Structural basis for breadth development in a HIV-1 neutralizing antibody

Antibody affinity maturation enables adaptive immune responses to a wide range of pathogens. In some individuals broadly neutralizing antibodies develop to recognize rapidly mutating pathogens with extensive sequence diversity. Vaccine design for pathogens such as HIV-1 and influenza have therefore focused on recapitulating the natural affinity maturation process. Here, we determined structures of antibodies in complex with HIV-1 Envelope for all observed members and ancestral states of a broadly neutralizing HIV-1 antibody clonal B cell lineage. These structures track the development of neutralization breadth from the unmutated common ancestor and define affinity maturation at high spatial resolution. By elucidating contacts mediated by key mutations at different stages of antibody development we have identified sites on the epitope-paratope interface that are the focus of affinity optimization. Thus, our results identify bottlenecks on the path to natural affinity maturation and r...

HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage

Immunity, 2017

Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial ...

Rapid selection of HIV envelopes that bind to neutralizing antibody B cell lineage members with functional improbable mutations

Cell Reports, 2021

Elicitation of broadly neutralizing antibodies (bnAbs) by an HIV vaccine will involve priming the immune system to activate antibody precursors, followed by boosting immunizations to select for antibodies with functional features required for neutralization breadth. The higher the number of mutations necessary for function, the more convoluted are the antibody developmental pathways. HIV bnAbs acquire a large number of somatic mutations, but not all mutations are functionally important. Here we identified a minimal subset of mutations sufficient for the function of to the naturally occurring, more mutated V3-glycan bnAb DH270.6. Using antibody library screening, candidate envelope immunogens that interacted with DH270.6-like antibodies containing this set of key mutations were identified and selected in vitro. Our results demonstrate that less complex B cell evolutionary pathways than those naturally observed exist for the induction of HIV bnAbs by vaccination, and establish rational approaches to identify boosting sequential envelope candidate immunogens.

Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization

Cell, 2019

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with bindingenergy hotspots coincident with the target subregion and capable of broad neutralization. In Brief A cross-clade, cross-reactive HIV-1 neutralizing antibody with ~59% neutralization breadth is elicited in macaques using a fusion-peptide-primed vaccine regimen, which focuses antibodybinding energy on a conserved viral epitope. Further phylogenetic antibody analysis provides insight into the eclipse phase of B cell development.

Structural evolution of glycan recognition by a family of potent HIV antibodies

Cell, 2014

The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans. Genomics (JCSG) funded by the NIH NIGMS Protein Structure Initiative (U54 GM094586) (I.A.W.).

Structural Insights from HIV-Antibody Coevolution and Related Immunization Studies

AIDS research and human retroviruses, 2018

Human immunodeficiency virus type 1 (HIV-1) is a rapidly evolving pathogen that causes acquired immunodeficiency syndrome (AIDS) in humans. There are ∼30-35 million people infected with HIV around the world, and ∼25 million have died since the first reported cases in 1981. In addition, each year 2-3 million people become newly infected, and >1 million die of AIDS. An HIV-1 vaccine would help halt an AIDS pandemic, and efforts to develop a vaccine have focused on targeting the HIV-1 envelope, Env, found on the surface of the virus. A number of chronically infected individuals have been shown to produce antibodies, called broadly neutralizing antibodies (bnAbs), that target many strains of HIV-1 by binding to Env, thus suggesting promise for HIV-1 vaccine development. BnAbs take years to develop, and have a number of traits that inhibit their production; thus, a number of researchers are trying to understand the pathways that result in bnAb production, so that they can be elicited ...

Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site

Cell reports, 2016

Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization.

Multiple antibody lineages in one donor target the glycan-V3 supersite of the HIV-1 envelope glycoprotein and display a preference for quaternary binding

Journal of virology, 2016

One of the goals of HIV-1 vaccine development is the elicitation of neutralizing antibodies against vulnerable regions on the envelope glycoproteins (Env) viral spike. Broadly neutralizing antibodies targeting the Env glycan-V3 region (also called the N332-glycan supersite) have previously been described, with several single lineages each derived from individual donors. We used a high-throughput B-cell culture method to isolate neutralizing antibodies from an HIV-1 infected donor with high serum neutralization breadth. Clonal relatives from three distinct antibody lineages were isolated. Each of these antibody lineages displayed modest breadth and potency, but shared several characteristics with the well-characterized glycan-V3 antibodies including dependence on glycans N332 and N301, VH4 family gene utilization, a CDRH2 insertion, and a longer than average CDRH3. In contrast to previously described glycan-V3 antibodies, the most potent of these antibodies preferentially recognized ...