On the Integration of General Relativity with Quantum Theory and the Standard Model (original) (raw)
We propose (1) that the flat space-time metric that defines the traditional covariant Heisenberg algebra commutation rules of quantum theory between the four-vector position and momentum, be generalized to be the space-time dependent Riemann metric satisfying Einstein’s equations for general relativity (GR), which determine the metric from the energy-momentum tensor. The metric is then a function of the four-vector position operators which are to be expressed in the position representation. This then allows one (2) to recast the Christoffel symbols, and the Riemann and Ricci tensors in Einstein’s GR differential equations for the metric, as an algebra of commutation relations among the four-vector position and momentum operators (a generalized Lie algebra). This then (3) defines the structure constants of the rest of the Poincare algebra with the space-time dependent metric of general relativity tightly integrating it with quantum theory. (4) We propose that the four momentumoperat...