High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling (original) (raw)
Related papers
Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats
Neurobiology of Aging, 2013
The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether high fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mid-aged animals were maintained on control or HFD for 4.5 months and peripheral metabolic variables, cognitive function, and electrophysiological responses to insulin in the hippocampus were measured. HFD increased lipid accumulation in the periphery, though overt diabetes did not develop, nor was spatial learning and memory altered. Hippocampal adiponectin levels were reduced in aging animals but unaffected by HFD. For the first time, however, we show that the AHP is sensitive to insulin, and that this sensitivity is reduced by HFD. Interestingly, although peripheral glucose regulation was relatively insensitive to HFD, the brain appeared to show greater sensitivity to HFD in F344 rats.
Frontiers in Aging Neuroscience, 2023
Being overweight and obesity are world health problems, with a higher prevalence in women, defined as abnormal or excessive fat accumulation that increases the risk of chronic diseases. Excess energy leads to adipose expansion, generating hypertrophic adipocytes that produce various pro-inflammatory molecules. These molecules cause chronic low-intensity inflammation, affecting the organism's functioning and the central nervous system (CNS), inducing neuroinflammation. The neuroinflammatory response during obesity occurs in different structures of the CNS involved in memory and learning, such as the cortex and the hippocampus. Here we analyzed how obesity-related peripheral inflammation can affect CNS physiology, generating neuroinflammation and promoting cellular senescence establishment. Since some studies have shown an increase in senescent cells during aging, obesity, and neurodegenerative diseases, we proposed that cellular senescence participation may contribute to the cognitive decline in an obesity model of middle-aged female Wistar rats. The inflammatory state of 6 and 13 months-old female Wistar rats fed with a hypercaloric diet was measured in serum and CNS (cortex and hippocampus). Memory was evaluated using the novel object recognition (NOR) test; the presence of senescent markers was also determined. Our data suggest that the systemic inflammation generated by obesity induces a neuroinflammatory state in regions involved in learning and memory, with an increase in senescent markers, thus proposing senescence as a potential participant in the negative consequences of obesity in cognition.
Molecular Neurobiology, 2019
Middle age is an early stage of the aging process, during which the consumption of diets rich in saturated fats and/or simple sugars might influence brain function, but only few data are available on this issue. We therefore investigated the impact of a diet rich in saturated fat and fructose (HFF) on mitochondrial physiology in hippocampus and frontal cortex of middle-aged rats (1 year old), by including a group of adult rats (90 days) as a Bnegative control,^lacking the putative effect of aging. Middle-aged rats were fed HFF or control diet for 4 weeks. Mitochondrial function was analyzed by high-resolution respirometry and by assessing the amount of respiratory complexes. Markers of oxidative balance, as well as the protein content of uncoupling protein 2 (UCP2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha (PPARα), were also assessed. A decrease in the activity of complex I was detected in both brain areas of middle-aged rats. In hippocampus, mitochondrial respiratory capacity and complex IV content decreased with age and increased with HFF diet. Higher protein oxidative damage, decreased antioxidant defenses, and increased UCP2 and PGC-1α content were found in hippocampus of middle-aged rats. HFF feeding induced a significant reduction in the amount of UCP2, PGC-1α, and PPARα, together with higher protein oxidative damage, in both brain areas. Overall, our results point to middle age as a condition of early brain aging for mitochondrial function, with hippocampus being an area more susceptible to metabolic impairment than frontal cortex.
High saturated fat and low carbohydrate diet decreases lifespan independent of body weight in mice
Longevity & Healthspan, 2013
Obesity is an epidemic disease that may affect brain function. The present study examined the effect of high fat diet (HF) and physical exercise on peripheral tissue and hippocampal signaling. CF-1 mice (n = 4, per cage) were divided into groups receiving high fat (HF) or control (CD) diets for 5 months, with or without voluntary exercise. Serum triacylglycerol, total cholesterol, HDLc, liver triacylglycerol and glycogen concentrations were evaluated (n = 6). Also, the phosphorylation state of the AKT ? ERK 1/2 ? CREB pathway (AKT, pAKTser473, ERK 1/ 2, pERK 1/2, CREB and pCREB, n = 4-6) was analyzed in the hippocampus. HF diet caused an increase in AKT phosphorylation at ser473 (P \ 0.05), while exercise increased the phosphorylation of ERK 1/2 (P \ 0.05) and CREB (P \ 0.05). As expected, exercise reversed some of the harmful effects of HF, i.e., increased liver deposition of fat (P \ 0.05) and fat gain in the abdominal region (P \ 0.05). In conclusion, the effects of exercise and HF diet on brain signaling appear to affect the hippocampal AKT ? ERK 1/2 ? CREB pathway in independent ways: HF intake caused increased phosphorylation of AKTser473, while exercise increased ERK 1/2 ? CREB signaling. The physiological relevance of these findings in brain function remains to be elucidated.
Journal of Alzheimer's Disease, 2016
Metabolic dysfunction related to diet-induced obesity has recently been linked to the pathogenesis of sporadic Alzheimer's disease (AD). However, the underlying mechanisms linking obesity and AD remain unclear. The purpose of this study was to examine early alterations in brain insulin signaling, inflammatory/stress markers, and energetic stress in a model of diet-induced obesity during middle age. Male C57BL/6J mice were randomized to either a control diet (AGE n = 12) or high-fat and sucrose diet (AGE-HFS n = 12) for 13-weeks from 20-weeks of age. Prefrontal cortex and hippocampal samples were collected at 20-weeks of age (BSL n = 11) and at 33-weeks of age (AGE and AGE-HFS). The HFS diet resulted in increased body weight (30%; P = 0.0001), increased %fat mass (28%; P = 0.0001), and decreased %lean mass (33%; P = 0.0001) compared to aged controls. In the prefrontal cortex, AGE-HFS resulted in increased 5 0 adenosine monophosphateactivated protein kinase (AMPK) phosphorylation (P = 0.045). In the hippocampus, AGE-HFS resulted in increased extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation and protein kinase B (Akt) serine473 and glycogen synthase kinase (GSK) phosphorylation (P < 0.05). Results from this study demonstrate that aging combined with a HFS diet results in increased inflammation (pERK and pJNK) and energetic stress (pAMPK) in the hippocampus and prefrontal cortex, respectively. Together these novel results provide important information for future targets in early AD pathogenesis.
Archives of Biochemistry and Biophysics, 1996
The objective of this study was to determine if oxidative stress/damage is a possible causal factor in the senescence-related loss of brain functions in the mouse. If such a relationship indeed existed, it was expected that oxidative protein damage would increase with age within regions of the brain associated with senescence-related functional loss, and that calorie restriction, an intervention which retards certain aspects of age-associated functional loss, would reverse such increases. Dietary restriction was found to retard age-associated decline of sensorimotor coordination and improve performance of aged mice on an avoidance learning problem. Protein carbonyl concentration, one measure of protein oxidation, increased from 8 to 27 months of age in most regions of the mouse brain, with the most notable increases occurring in the striatum and hippocampus, regions of the brain strongly implicated in age-associated functional loss. Age-associated loss of protein sulfhydryls was more uniform across brain regions and did not involve the hippocampus. Dietary restriction resulted in reversal of the age-associated regional trends in carbonyl and sulfhydryl concentration, with the largest changes occurring within the striatum. Cross over studies in aged calorie restricted andad libitumfed mice indicated that lowering of carbonyl content by calorie restriction could be induced or reversed within a time frame of 3 to 6 weeks. These findings suggest that the beneficial effects of dietary restriction upon brain function and life span may depend upon its ability to acutely reduce steady-state levels of oxidative stress.
NOX activity in brain aging: Exacerbation by high fat diet
Free Radical Biology and Medicine, 2010
This study describes how age and high fat diet affect the profile of NADPH oxidase (NOX). Specifically, NOX activity and subunit expression were evaluated in the frontal cerebral cortex of 7-, 16-, and 24-month old mice following a 4-month exposure to either Western diet (WD, 41% calories from fat) or very high fat lard diet (VHFD, 60% calories from fat). Data reveal a significant effect of age in on NOX activity, and show that NOX activity was only increased by VHFD, and only in 24-month old mice. NOX subunit expression was also increased by diet only in older mice. Quantification of protein carbonyls revealed significant age-related increases in protein oxidation, and indicate that only aged mice respond to high fat diet with enhanced protein oxidation. Histological analyses indicate prominent neuronal localization of both NOX subunits and protein carbonylation. Finally, data indicate that changes in reactive microgliosis, but not astrocytosis, mirror the pattern of diet-induced NOX activation and protein oxidation. Collectively, these data show that both age and dietary fat drive NOX activation, and further indicate that aged mice are preferentially sensitive to the effects of high fat diet. These data also suggest that high fat diets might exacerbate age-related oxidative stress in the brain via increased NOX.
Neurobiology of Aging, 2017
More Americans are consuming diets higher in saturated fats and refined sugars than ever before, and based on increasing obesity rates, this is a growing trend among older adults as well. While high saturated fat diet (HFD) consumption has been shown to sensitize the inflammatory response to a subsequent immune challenge in young adult rats, the inflammatory effect of HFD in the already-vulnerable aging brain has not yet been assessed. Here, we explored whether short-term (3 days) consumption of HFD would serve as a neuroinflammatory trigger in aging animals, leading to cognitive deficits. HFD impaired long-term contextual (hippocampal-dependent) and auditorycued fear (amygdalar-dependent) memory in aged, but not young adult rats. Short-term memory performance for both tasks was intact, suggesting that HFD impairs memory consolidation processes. Microglial markers of activation Iba1 and cd11b were only increased in the aged rats, while MHCII was further amplified by HFD. Furthermore, these HFD-induced long-term memory impairments were accompanied by IL-1β protein increases in both hippocampus and amygdala in aged rats. Central administration of IL-1RA in aged rats following conditioning mitigated both contextual and auditory-cued fear memory impairments caused by HFD, strongly suggesting that IL-1β plays a critical role in these effects. Voluntary wheel running, known to have antiinflammatory effects in the hippocampus, rescued hippocampal-dependent but not amygdalardependent memory impairments caused by HFD. Together, these data suggest that short-term consumption of HFD can lead to memory deficits and significant brain inflammation in the aged animal, and strongly suggest that appropriate diet is crucial for cognitive health.
Neurochemistry International, 2013
The effect of long-term calorie restriction (CR) on metabolites, fatty acid profiles and energy substrate transporter expression in the brain was assessed in aged rats. Three groups of male Sprague-Dawley rats were studied: (i) a 2 month old ad libitum-fed (2AL group), (ii) a 19 month old ad libitum-fed (19AL group), and (iii) a 19 month old group subjected to 40% CR from the age of 7.5 to 19 months (19CR group). The diet contained high sucrose and low n-3 polyunsaturated fatty acids (PUFA) so as to imitate a Western-style diet. High resolution magic angle spinning-1 H NMR showed an effect of aging on brain cortex metabolites compared to 2AL rats, the largest differences being for myo-inositol (+251% and +181%), lactate (+203% and +188%), b-hydroxybutyrate (+176% and +618%) and choline (+148% and +120%), in 19AL and 19 CR rats, respectively. However, brain metabolites did not differ between the 19AL and 19CR groups. Cortex fatty acid profiles showed that n-3 PUFA were 35-47% lower but monounsaturated fatty acids were 40-52% higher in 19AL and 19CR rats compared to 2AL rats. Brain microvessel glucose transporter (GLUT1) was 68% higher in 19AL rats than in 2AL rats, while the monocarboxylate transporter, MCT1, was 61% lower in 19CR rats compared to 19AL rats. We conclude that on a high-sucrose, low n-3 PUFA diet, the brain of aged AL rats had higher metabolites and microvessel GLUT1 expression compared to 2AL rats. However, long-term CR in aged rats did not markedly change brain metabolite or fatty acid profile, but did reduce brain microvessel MCT1 expression.