SpringLoc: A Device-Free Localization Technique for Indoor Positioning and Tracking Using Adaptive RSSI Spring Relaxation (original) (raw)

Indoor localization without the pain

2010

While WiFi-based indoor localization is attractive, the need for a significant degree of pre-deployment effort is a key challenge. In this paper, we ask the question: can we perform indoor localization with no pre-deployment effort? Our setting is an indoor space, such as an office building or a mall, with WiFi coverage but where we do not assume knowledge of the physical layout, including the placement of the APs. Users carrying WiFi-enabled devices such as smartphones traverse this space in normal course. The mobile devices record Received Signal Strength (RSS) measurements corresponding to APs in their view at various (unknown) locations and report these to a localization server. Occasionally, a mobile device will also obtain and report a location fix, say by obtaining a GPS lock at the entrance or near a window. The centerpiece of our work is the EZ Localization algorithm, which runs on the localization server. The key intuition is that all of the observations reported to the se...

An Enhanced Indoor Positioning Technique Based on a Novel Received Signal Strength Indicator Distance Prediction and Correction Model

Sensors, 2021

Indoor positioning has become a very promising research topic due to the growing demand for accurate node location information for indoor environments. Nonetheless, current positioning algorithms typically present the issue of inaccurate positioning due to communication noise and interferences. In addition, most of the indoor positioning techniques require additional hardware equipment and complex algorithms to achieve high positioning accuracy. This leads to higher energy consumption and communication cost. Therefore, this paper proposes an enhanced indoor positioning technique based on a novel received signal strength indication (RSSI) distance prediction and correction model to improve the positioning accuracy of target nodes in indoor environments, with contributions including a new distance correction formula based on RSSI log-distance model, a correction factor (Beta) with a correction exponent (Sigma) for each distance between unknown node and beacon (anchor nodes) which are ...

An Analysis of Device-Free and Device-Based WiFi-Localization Systems

International Journal of Ambient Computing and Intelligence, 2014

WiFi-based localization became one of the main indoor localization techniques due to the ubiquity of WiFi connectivity. However, indoor environments exhibit complex wireless propagation characteristics. Typically, these characteristics are captured by constructing a fingerprint map for the different locations in the area of interest. This finger print requires significant overhead in manual construction, and thus has been one of the major drawbacks of WiFi-based localization. In this paper, the authors present an automated tool for finger print constructions and leverage it to study novel scenarios for device-based and device-free WiFi-based localization that are difficult to evaluate in a real environment. In a particular, the authors examine the effect of changing the access points (AP) mounting location, AP technology upgrade, crowd effect on calibration and operation, among others; on the accuracy of the localization system. The authors present the analysis for the two classes o...