The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex (original) (raw)
Related papers
1996
Foot-and-mouth disease virus (FMDV) enters cells by attaching to cellular receptor molecules of the integrin family, one of which has been identified as the RGD-binding integrin ␣v3. Here we report that, in addition to an integrin binding site, type O strains of FMDV share with natural ligands of ␣v3 (i.e., vitronectin and fibronectin) a specific affinity for heparin and that binding to the cellular form of this sulfated glycan, heparan sulfate, is required for efficient infection of cells in culture. Binding of the virus to paraformaldehyde-fixed cells was powerfully inhibited by agents such as heparin, that compete with heparan sulfate or by agents that compete for heparan sulfate (platelet factor 4) or that inactivate it (heparinase). Neither chondroitin sulfate, a structurally related component of the extracellular matrix, nor dextran sulfate appreciably inhibited binding. The functional importance of heparan sulfate binding was demonstrated by the facts that (i) infection of live cells by FMDV could also be blocked specifically by heparin, albeit at a much higher concentration of inhibitor; (ii) pretreatment of cells with heparinase reduced the number of plaques formed compared with that for untreated cells; and (iii) mutant cell lines deficient in heparan sulfate expression were unable to support plaque formation by FMDV, even though they remained equally susceptible to another picornavirus, bovine enterovirus. The results show that entry of type O FMDV into cells is a complex process and suggest that the initial contact with the cell surface is made through heparan sulfate.
The Journal of general virology, 2014
In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2) consistently gained positively charged amino acids in the putative heparin-sulfate-binding pocket (VP2 bE-bF loop, VP1 C-terminus and VP3 b-B knob) surrounding the fivefold symmetry axis (VP1 bF-bG loop) and at other discrete sites on the capsid (VP3 bG-bH loop, VP1 C-terminus, VP2 bC strand and VP1 bG-bH loop). A lysine insertion in the VP1 bF-bG loop of two of the BHK-21-adapted viruses supports the biological advantage of positively charged residues acquired in cell culture. The charge transitions occurred irrespective of cell line, suggesting their possible role in ionic interaction with ubiquitous negatively charged cell-surface molecules such as glycosaminoglycans (GAG). This was supported by the ability of the cell-culture-adapted variants to replicate in the integrin-deficient, GAG-positive CHO-K1 cells and their superior fitness in competition assays compared with the lower passage viruses with WT genotypes. Substitutions fixed in the VP1 bG-bH loop ("3, "2 and +2 'RGD' positions) or in the structural element known to be juxtaposed against that loop (VP1 bB-bC loop) suggest their possible role in modulating the efficiency and specificity of interaction of the 'RGD' motif with a v -integrin receptors. The nature and location of the substitutions described in this study could be applied in the rapid cell culture adaptation of viral strains for vaccine production.
Journal of Virology, 1997
The integrin ␣v3 has been shown to act as the receptor for internalization of foot-and-mouth disease virus (FMDV) (A12), with attachment being through a highly conserved RGD motif located on the G-H loop of viral capsid protein VP1. In addition, however, we have recently shown that efficient infection of culture-grown cells by FMDV (O1BFS) requires binding to cell surface heparan sulfate. In this study, we have used a solid-phase receptor binding assay to characterize the binding by FMDV to purified ␣v3 in the absence of heparan sulfate and other cell surface components. In this assay, FMDV (O1BFS) successfully replicated authentic ligand binding by cellular ␣v3 in terms of its high affinity, dependence on divalent cations, and activation by manganese ions. Virus binding to this preparation of ␣v3 was exquisitely sensitive to competition by short RGDcontaining peptides (50% inhibition at <10 ؊8 M peptide), and this inhibition was highly sequence specific, with the equivalent RGE peptide being at least 10 4 fold less effective as a competitor. Representative viruses of the other six serotypes of FMDV bound to ␣v3 in a similar RGD-specific manner, although significant differences in sensitivity to RGD peptides suggest that the affinity of the different FMDV serotypes for ␣v3 is influenced, in part, by the variable amino acid residues in the VP1 G-H loop on either side of the RGD.
Virus Research, 2010
Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the ␣ V subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in nonhost cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the F-G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the D-E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures.
Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus
Journal of General Virology, 2015
Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1-VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A2). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A2 vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.
Journal of Virology, 2003
After 13 passages on BHK cells to produce a vaccine, a Cathay topotype isolate of FMDV serotype O from China (O/CHA/90) extended its cell culture host range and bound to heparin-Sepharose, although it did not require cell surface HS as a receptor molecule. To understand these phenomena, we constructed chimeric viruses by using a type A 12 infectious cDNA and the capsid protein-coding regions of O/CHA/90 and its cell culture-adapted derivative (vac-O/CHA/90). Using a set of viruses derived from these chimeras by exchanging portions of the capsid-coding regions, we discovered that a group of amino acid residues that surround the fivefold axis of the icosahedral virion determine host range in cell culture and influence pathogenicity in pigs. These residues included aromatic amino acids at positions 108 and 174 and positively charged residues at positions 83 and 172 in protein 1D. To test if these residues participated in non-integrin-dependent cell binding, the integrin-binding RGD sequence in protein 1D was changed to KGE in two different chimeras. Evaluation of these KGE viruses indicated that growth in cell culture was not dependent on HS. One of these viruses was tested in pigs, where it produced a mild disease and maintained its KGE sequence. These results are discussed in terms of receptor utilization and pathogenesis of this important pathogen.
Cellular Receptors for Foot and Mouth Disease Virus
Intervirology, 2009
Foot-and-mouth disease virus (FMDV), the prototype member of the Aphthovirus genus, is a single-stranded, positivesense RNA genome virus, which affects many domestic livestock cloven-hoofed animals, causing substantial lost of milk in dairy cattle, reduction in the growth rate of meat animals, among others. It has been shown that the virus can enter to the cells using different pathways; the main one binding integrins via the clathrin-mediated endocytosis pathway, trafficking throughout the acidified endocytic vesicles, where its capsid rapidly dissociates, resulting in the release of the RNA genome, and the second one using heparan sulfate in which FMDV enters to the cells using the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. Different integrins had been involved as FMDV receptors (␣ v  1, ␣ v  3, ␣ 5  1, ␣ v  6, ␣ v  8); this review will try to resume the basic information about FMDV receptors from the last years to the present and will resume the most important in vitro and in vivo studies to elucidate the role of this receptor on the infection.
Journal of virology, 2003
Adaptation of field isolates of foot-and-mouth disease virus (FMDV) to grow in cells in culture can result in changes in viral properties that include acquisition of the ability to bind to cell surface heparan sulfate (HS). After 13 passages on BHK cells to produce a vaccine, a Cathay topotype isolate of FMDV serotype O from China (O/CHA/90) extended its cell culture host range and bound to heparin-Sepharose, although it did not require cell surface HS as a receptor molecule. To understand these phenomena, we constructed chimeric viruses by using a type A 12 infectious cDNA and the capsid protein-coding regions of O/CHA/90 and its cell culture-adapted derivative (vac-O/CHA/90). Using a set of viruses derived from these chimeras by exchanging portions of the capsid-coding regions, we discovered that a group of amino acid residues that surround the fivefold axis of the icosahedral virion determine host range in cell culture and influence pathogenicity in pigs. These residues included aromatic amino acids at positions 108 and 174 and positively charged residues at positions 83 and 172 in protein 1D. To test if these residues participated in non-integrin-dependent cell binding, the integrin-binding RGD sequence in protein 1D was changed to KGE in two different chimeras. Evaluation of these KGE viruses indicated that growth in cell culture was not dependent on HS. One of these viruses was tested in pigs, where it produced a mild disease and maintained its KGE sequence. These results are discussed in terms of receptor utilization and pathogenesis of this important pathogen.
Journal of Virology, 2013
Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q 110 K ). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (␣51 and ␣v5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q 110 K substitution did not use these integrins. In contrast, the VP1-Q 110 K substitution appeared to result in enhanced interactions with ␣v6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use ␣v6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of ␣v6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.
Journal of General Virology, 1999
The antigenic properties and genetic stability of a multiply passaged foot-and-mouth disease virus (FMDV) clone C-S8c1 with an Arg-Gly-Gly triplet (RGG) instead of the Arg-Gly-Asp (RGD) integrin-recognition motif at positions 141 to143 of capsid protein VP1 are described. Clear antigenic differences between FMDV RGG and clone C-S8c1 have been documented in ELISA, enzyme-linked immunoelectrotransfer (Western) blot and neutralization assays using site A-specific monoclonal antibodies and anti-FMDV polyclonal antibodies from swine and guinea pigs. The results validate with a live virus the role of the RGD (in particular Asp-143) in recognition of (and neutralization by) antibodies, a role previously suggested by immunochemical and structural studies with synthetic peptides. The FMDV RGG was genetically stable in a large proportion of serial infections of BHK-21 cells. However, a revertant virus with RGD was generated in one out of six passage series. Interestingly, this revertant FMDV ...