Correlated evolution of androgen receptor and aromatase revisited (original) (raw)
Related papers
Parallel Evolution between Aromatase and Androgen Receptor in the Animal Kingdom
Molecular Biology and Evolution, 2009
There are now many known cases of orthologous or unrelated proteins in different species that have undergone parallel evolution to satisfy a similar function. However, there are no reported cases of parallel evolution for proteins that bind a common ligand but have different functions. We focused on two proteins that have different functions in steroid hormone biosynthesis and action but bind a common ligand, androgen. The first protein, androgen receptor (AR), is a nuclear hormone receptor and the second one, aromatase (cytochrome P450 19 [CYP19]), converts androgen to estrogen. We hypothesized that binding of the androgen ligand has exerted common selective pressure on both AR and CYP19, resulting in a signature of parallel evolution between these two proteins, though they perform different functions. Consistent with this hypothesis, we found that rates of amino acid change in AR and CYP19 are strongly correlated across the metazoan phylogeny, whereas no significant correlation was found in the control set of proteins. Moreover, we inferred that genomic toolkits required for steroid biosynthesis and action were present in a basal metazoan, cnidarians. The close similarities between vertebrate and sea anemone AR and CYP19 suggest a very ancient origin of their endocrine functions at the base of metazoan evolution. Finally, we found evidence supporting the hypothesis that the androgen-to-estrogen ratio determines the gonadal sex in all metazoans.
General and Comparative Endocrinology, 2005
Aromatase (cytochrome P450 19, CYP19, P450arom) is the enzyme responsible for the production of estrogens, hormones critical for development and reproduction. Aromatase was sequenced from a white-sided dolphin (Lagenorhynchus acutus) ovary, transiently transfected into HEK 293 cells, and the expressed protein was characterized for aromatase activity in the presence of androstenedione and testosterone and after exposure to the aromatase inhibitor letrazole. The K m s for androstenedione and testosterone were 63.5 and 75 nM, respectively, values that are very similar to those reported for other mammalian aromatases. A Bayesian phylogenetic analysis of the vertebrate aromatases was performed on the amino acid sequences of aromatases from Wsh, amphibians, reptiles, birds, and mammals. Based on known species phylogeny, the cetacean aromatase showed an expected grouping with artiodactyls (cow, sheep, and goat). An analysis of functional divergence showed strong conservation of aromatase across the entire protein, which indicates that the observed sequence divergence is functionally neutral. 2004 Elsevier Inc. All rights reserved.
Adaptive evolution of mammalian aromatases: lessons from Suiformes
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2009
Estrogen synthesis evolved in chordates to control reproduction. The terminal enzyme in the cascade directly responsible for estrogen synthesis is aromatase cytochrome P450 (P450arom) encoded by the CYP19 gene. Mammals typically have a single CYP19 gene but pigs, peccaries and other Suiformes have two or more resulting from duplication in a common ancestor. Duplication of CYP genes in the steroid synthetic cascade has occurred for only one other enzyme, also terminal, 11βhydroxylase P450 (P450c11). P450arom and P450c11 share common substrates and even physiological functions as possible remnants from a common P450 progenitor, perhaps an ancestral P450arom, which is supported by phylogenetic analysis. Conserved tissue-specific expression patterns of P450arom paralogs in placenta and gonads of pigs and peccaries suggest how functional adaptation may have proceeded divergently and influenced adopted reproductive strategies including ovulation rate and litter size. Data suggest that the porcine placental paralog evolved catalytically to protect female conceptuses from testosterone produced by male siblings; the gonadal paralog to synthesize a novel, nonaromatizable testosterone metabolite (1OH-testosterone) that may increase ovulation rate. This would represent a coevolution facilitating litter bearing as pigs diverged from peccaries. Evidence of convergence between the peccary CYP19 genes and lower tissue expression may therefore represent initiation of loss of the functional paralogs. Studies on the Suiforme aromatases provide insights into the evolution of the steroidogenic cascade and metabolic pathways in general, how it translates into physiological adaptations (altered reproductive strategies for instance), and how duplicated genes become stabilized or disappear from genomes.
Molecular evolution of angrogen receptors in fish
Fish Physiology and Biochemistry, 2000
Background: Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub-or neo-functionalization of many duplicated genes.
Evolutionary origins of the estrogen signaling system: Insights from amphioxus
The Journal of Steroid Biochemistry and Molecular Biology, 2011
Classically, the estrogen signaling system has two core components: cytochrome P450 aromatase (CYP19), the enzyme complex that catalyzes the rate limiting step in estrogen biosynthesis; and estrogen receptors (ERs), ligand activated transcription factors that interact with the regulatory region of target genes to mediate the biological effects of estrogen. While the importance of estrogens for regulation of reproduction, development and physiology has been well-documented in gnathostome vertebrates, the evolutionary origins of estrogen as a hormone are still unclear. As invertebrates within the phylum Chordata, cephalochordates (e.g. the amphioxus of the genus Branchiostoma) are among the closest invertebrate relatives of the vertebrates and can provide critical insight into the evolution of vertebrate-specific molecules and pathways. To address this question, this paper briefly reviews relevant earlier studies that help to illuminate the history of the aromatase and ER genes, with a particular emphasis on insights from amphioxus and other invertebrates. We then present new analyses of amphioxus aromatase and ER sequence and function, including an in silico model of the amphioxus aromatase protein, and CYP19 gene analysis. CYP19 shares a conserved gene structure with vertebrates (9 coding exons) and moderate sequence conservation (40% amino acid identity with human CYP19). Modeling of the amphioxus aromatase substrate binding site and simulated docking of androstenedione in comparison to the human aromatase shows that the substrate binding site is conserved and predicts that androstenedione could be a substrate for amphioxus CYP19. The amphioxus ER is structurally similar to vertebrate ERs, but differs in sequence and key residues of the ligand binding domain. Consistent with results from other laboratories, amphioxus ER did not bind radiolabeled estradiol, nor did it modulate gene expression on anestrogen-responsive element (ERE) in the presence of estradiol, 4-hydroxytamoxifen, diethylstilbestrol, bisphenol A or genistein. Interestingly, it has been shown that a related gene, the amphioxus "steroid receptor" (SR), can be activated by estrogens and that amphioxus ER can repress this activation. CYP19, ER and SR are all primarily expressed in gonadal tissue, suggesting an ancient paracrine/autocrinesignaling role, but it is not yet known how their expression is regulated and, if estrogen is actually synthesized in amphioxus, whether it has a role in mediating any biological effects. Functional studies are clearly needed to link emerging bioinformatics and in vitro molecular biology results with organismal physiology to develop an understanding of the evolution of estrogen signaling.
Journal of Molecular Evolution, 2007
Aromatase cytochrome P450 (P450arom), the enzyme that catalyzes estrogen synthesis, is required for successful reproduction and is encoded by a single copy gene (CYP19) in most mammals. However, pigs and their distant suiform relatives the peccaries experienced CYP19 duplication. Here, the evolutionary origin of CYP19 duplication, and the evolution of the gene paralogs, was explored further in collared peccaries (Pecari tayassu). Exons IV and V, and the intervening intron, representing duplicated CYP19 genes, were cloned and sequenced from collared peccary, pig, and hippopotamus. Sequence alignment and analysis identified a gene conversion in collared peccary with a breakpoint 102 base pairs (bp) upstream of exon V. Phylogenetic analyses of nucleotide and amino acid sequence upstream of the breakpoint supported a tree in which one peccary sequence was orthologous with the porcine gonadal gene. Cloning and sequencing of tissue transcripts, using reverse-transcriptase polymerase chain reaction techniques (RT-PCR), confirmed that the gonadal ortholog was expressed in collared peccary testis. Orthology of the other genomic sequence with the porcine placental gene was not resolved, but its placenta-specific expression in collared peccary was confirmed by similar transcript analysis. Immunoblot and enzyme activity in collared peccary testes demonstrated much lower levels of P450arom than in pig testis. Collared peccary placental P450arom expression also seemed much lower than pigs. Thus, suiform CYP19 genes arose from an ancestral duplication that has maintained gonad-and placenta-specific expression, but at lower levels in peccaries than pigs, perhaps facilitating the emergence of different reproductive strategies as Suiformes diverged and evolved.
General and Comparative Endocrinology, 2008
Cytochrome P450 aromatase (CYP19) is a key enzyme in the steroidogenic pathway that catalyses the conversion of testosterone to estrogen, and therefore is thought to influence gonadal sex differentiation. In an effort to understand the role of this enzyme in ovarian differentiation, we isolated cDNA encoding the two distinct isoforms, ovarian and brain (termed cyp19a and cyp19b, respectively) of adult common carp, Cyprinus carpio. The cloned cDNA for cyp19a had an open reading frame (ORF) of 518 amino acid residues, in contrast to cyp19b with an ORF of 511 amino acids. Sequence and phylogenetic analysis showed that these CYP19 isoforms were orthologous with previously described cyp19a and cyp19b from other teleosts. Quantitative real-time PCR indicated that both isoforms are expressed in adult ovary and brain, with predominant expression of cyp19a in the ovary and cyp19b in the brain. The major aromatase expressing tissue was found to be the brain, with greatest cyp19b expression in the anterior quarter (telencephalon) in both sexes. The gonad showed sexually dimorphic expression of both genes and dimorphic expression of cyp19a was observed in the cerebellum and the liver. Ontogenic expression showed that only the ovarian aromatase transcript is inherited maternally, with lower expression observed through early larval development under warmer rearing conditions. The differential and overlapping expression suggests these two aromatase genes have different roles in reproductive physiology.
Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage
Molecular Biology and Evolution, 2015
Steroid hormone receptor family provides an example of evolution of diverse transcription factors through wholegenome duplication (WGD). However, little is known about how their functions have been evolved after the duplication. Teleosts present a good model to investigate an accurate evolutionary history of protein function after WGD, because a teleost-specific WGD (TSGD) resulted in a variety of duplicated genes in modern fishes. This study focused on the evolution of androgen receptor (AR) gene, as two distinct paralogs, ARa and ARb, have evolved in teleost lineage after TSGD. ARa showed a unique intracellular localization with a higher transactivation response than that of ARb. Using site-directed mutagenesis and computational prediction of protein-ligand interactions, we identified two key substitutions generating a new functionality of euteleost ARa. The substitution in the hinge region contributes to the unique intracellular localization of ARa. The substitution on helices 10/11 in the ligand-binding domain possibly modulates hydrogen bonds that stabilize the receptor-ligand complex leading to the higher transactivation response of ARa. These substitutions were conserved in Acanthomorpha (spiny-rayed fish) ARas, but not in an earlier branching lineage among teleosts, Japanese eel. Insertion of these substitutions into ARs from Japanese eel recapitulates the evolutionary novelty of euteleost ARa. These findings together indicate that the substitutions generating a new functionality of teleost ARa were fixed in teleost genome after the divergence of the Elopomorpha lineage. Our findings provide a molecular explanation for an adaptation process leading to generation of the hyperactive AR subtype after TSGD.
Molecular and Structural Evolution of Cytochrome P450 Aromatase
International Journal of Molecular Sciences
Aromatase is the cytochrome P450 enzyme converting androgens into estrogen in the last phase of steroidogenesis. As estrogens are crucial in reproductive biology, aromatase is found in vertebrates and the invertebrates of the genus Branchiostoma, where it carries out the aromatization reaction of the A-ring of androgens that produces estrogens. Here, we investigate the molecular evolution of this unique and highly substrate-selective enzyme by means of structural, sequence alignment, and homology modeling, shedding light on its key role in species conservation. The alignments led to the identification of a core structure that, together with key and unique amino acids located in the active site and the substrate recognition sites, has been well conserved during evolution. Structural analysis shows what their roles are and the reason why they have been preserved. Moreover, the residues involved in the interaction with the redox partner and some phosphorylation sites appeared late duri...