Small molecule 2′-deoxycytidine differentiates human umbilical cord-derived MSCs into cardiac progenitors in vitro and their in vivo xeno-transplantation improves cardiac function (original) (raw)
Related papers
2000
IW, Heyndrickx GR. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. The in vivo cardiac differentiation and functional effects of unmodified adult bone marrow mesenchymal stem cells (MSCs) after myocardial infarction (MI) is controversial. We postulated that ex vivo pretreatment of autologous MSCs using cardiomyogenic growth factors will lead to cardiomyogenic specification and will result in superior biological and functional effects on cardiac regeneration of chronically infarcted myocardium. We used a chronic dog MI model generated by ligation of the coronary artery (n ϭ 30). Autologous dog bone marrow MSCs were isolated, culture expanded, and specified into a cardiac lineage by adding growth factors, including basic FGF, IGF-1, and bone morphogenetic protein-2. Dogs underwent cell injection Ͼ8 wk after the infarction and were randomized into two groups. Group A dogs (n ϭ 20) received MSCs specified with growth factors (147 Ϯ 96 ϫ 10 6 ), and group B (n ϭ 10) received unmodified MSCs (168 Ϯ 24 ϫ 10 6 ). After the growth factor treatment, MSCs stained positive for the early muscle and cardiac markers desmin, antimyocyte enhancer factor-2, and Nkx2-5. In group A dogs, prespecified MSCs colocalized with troponin I and cardiac myosin. At 12 wk, group A dogs showed a significantly larger increase in regional wall thickening of the infarcted territory (from 22 Ϯ 8 to 32 Ϯ 6% in group A; P Ͻ 0.05 vs. baseline and group B, and from 19 Ϯ 7 to 21 Ϯ 7% in group B, respectively) and a decrease in the wall motion score index (from 1.60 Ϯ 0.05 to 1.35 Ϯ 0.03 in group A; P Ͻ 0.05 vs. baseline and group B, and from 1.58 Ϯ 0.07 vs. 1.56 Ϯ 0.08 in group B, respectively). The biological ex vivo cardiomyogenic specification of adult MSCs before their transplantation is feasible and appears to improve their in vivo cardiac differentiation as well as the functional recovery in a dog model of the chronically infarcted myocardium. cardiac repair; myogenesis; chronic myocardial infarction; heart failure SEVERAL CELL TYPES HAVE BEEN utilized in the regeneration of damaged heart tissue (2, 4, 9, 11, 13, 16 -18, 23-25). After transplantation to the damaged heart, skeletal myoblasts dif-Address for reprint requests and other correspondence: J. Bartunek,
The Annals of Thoracic Surgery, 2007
Background. Cell transplantation offers the promise in the restoration of cardiac function after myocardial infarction. We investigate the therapeutic potential of human umbilical cord derived stem (UCDS) cells in a rat myocardial infarction model. Methods. Two weeks after induction of myocardial infarction, the surviving rats with left ventricular ejection fraction less than 60% were randomly divided into a phosphate-buffered saline control group and a UCDS cell treated group. Cardiac function was assessed by echocardiography 2 weeks and 4 weeks after cell transplantation. Histologic study and immunofluorescence were performed to investigate differentiation of transplanted cells, capillary and arteriole density, secretion of cytokines, and cardiomyocytes apoptosis. Results. A statistically significant improvement of cardiac function was observed in the experimental group of rats compared with the control group. Four weeks after transplantation, histologic examination revealed that some of the transplanted UCDS cells survived in the infarcted myocardium and accumulated around arterioles and scattered in capillary networks. We observed some of the cells expressed cardiac troponin-T, von Willebrand factor, and smooth muscle actin, indicating regeneration of damaged myocardium by cardiomyocytic, endothelial, and smooth muscle differentiation of UCDS cells in the infarcted myocardium. The capillary and arteriole density were also markedly increased in the UCDS-cell-treated group. In addition, the apoptotic cells were decreased significantly compared with the phosphate-buffered saline controls. Conclusions. Our findings demonstrate that transplanted UCDS cells provide benefit in cardiac function recovery after acute myocardial infarction in rats, suggesting UCDS cells represent a promising cell source for future routine cell therapy applications.
Cytotechnology, 2012
Mesenchymal stem cells (MSCs) are multipotent, can be easily expanded in culture and hence are an attractive therapeutic tool for cardiac repair. MSCs have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. The present study examined the differentiation capacity of conditioned media derived from ischemic cardiac tissue on human MSCs. Human Bone marrow-derived MSCs after due characterization by immunocytochemistry and flow cytometry for MSC specific markers were induced by culture media derived from ischemic (n = 13) and non-ischemic (n = 18) human cardiac tissue. Parallel cultures were treated with 5-azacytidine (5-azaC), a potent cardiomyogen. MSCs induced with ischemic conditioned media formed myotube like structures, expressed sarcomeric Troponin I, alpha myosin heavy chain proteins and were positive for cardiac specific markers (Nkx2.5, human atrial natriuretic peptide, myosin light chain-2a, GATA-4) as was observed in 5-azaC treated cells. However, uninduced MSCs as well as those induced with non-ischemic cardiac conditioned media still maintained the fibroblast morphology even after 3 weeks post-induction. Transmission electron microscopic studies of cardiomyocyte-like cells derived from MSCs revealed presence of sarcomeric bands but failed to show gap junctions and intercalated discs as of adult cardiomyocytes. These findings demonstrate that ischemic cardiac conditioned media induces morphological and molecular changes in MSCs with cardiac features, but at a primitive stage. Proteomics analysis of the ischemic conditioned media revealed differential expression of three relevant proteins (C-type lectin superfamily member 13, Testis-specific chromodomain protein Y2 and ADP/ATP translocase 1), whose exact role in cardiac regeneration needs further analysis.
We evaluated the ability of human embryonic stem cells (hESCs) and their cardiomyocyte derivatives (hESC-CMs) to engraft and improve myocardial performance in the rat chronic infarction model. Background Cell therapy is emerging as a novel therapy for myocardial repair but is hampered by the lack of sources for human cardiomyocytes. Methods Immunosuppressed healthy and infarcted (7 to 10 days after coronary ligation) rat hearts were randomized to injection of undifferentiated hESCs, hESC-CMs, noncardiomyocyte hESC derivatives, or saline. Detailed histological analysis and sequential echocardiography were used to determine the structural and functional consequences of cell grafting. Results Transplantation of undifferentiated hESCs resulted in the formation of teratoma-like structures. This phenomenon was prevented by grafting of ex vivo pre-differentiated hESC-CMs. The grafted cardiomyocytes survived, proliferated, matured, aligned, and formed gap junctions with host cardiac tissue. Functionally, animals injected with saline or nonmyocyte hESC derivatives demonstrated significant left ventricular (LV) dilatation and functional deterioration, whereas grafting of hESC-CMs attenuated this remodeling process. Hence, post-injury baseline fractional shortening deteriorated by 50% (from 20 Ϯ 2% to 10 Ϯ 2%) and by 30% (20 Ϯ 2% to 14 Ϯ 2%) in the saline and nonmyocyte groups while improving by 22% (21 Ϯ 2% to 25 Ϯ 3%) in the hESC-CM group. Similarly, wall motion score index and LV diastolic dimensions were significantly lower in the hESC-CM animals. Conclusions Transplantation of hESC-CMs after extensive myocardial infarction in rats results in the formation of stable cardiomyocyte grafts, attenuation of the remodeling process, and functional benefit. These findings highlight the potential of hESCs for myocardial cell therapy strategies.
Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration
Nature Clinical Practice Cardiovascular Medicine, 2007
Cardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. However, in the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. Recent studies have even surmised the existence of resident cardiac stem cells, endothelial cells generating cardiomyocytes by cell contact or extracardiac progenitors for cardiomyocytes, but these findings are still controversial. We describe the isolation of undifferentiated cells that grow as self-adherent clusters (that we have termed "cardiospheres") from subcultures of postnatal atrial or ventricular human biopsy specimens and from murine hearts. These cells are clonogenic, express stem and endothelial progenitor cell antigens/markers, and appear to have the properties of adult cardiac stem cells. They are capable of long-term self-renewal and can differentiate in vitro and after ectopic (dorsal subcutaneous connective tissue) or orthotopic (myocardial infarction) transplantation in SCID beige mouse to yield the major specialized cell types of the heart: myocytes (ie, cells demonstrating contractile activity and/or showing cardiomyocyte markers) and vascular cells (ie, cells with endothelial or smooth muscle markers). (Circ Res. 2004;95:911-921.) Key Words: adult stem cell Ⅲ myocardial regeneration and angiogenesis Original
Cardiology, 2011
Human umbilical cord mesenchymal cells (hUCM) can be easily obtained and processed in a laboratory. These cells may be considered as a suitable source in the repair of heart failure diseases. We, therefore, examined whether these cells may contribute to heart regeneration following an acute experimental myocardial infarction (MI). MI-induced animals received 5 × 10(6) hUCM cells, 5 × 10(6) 5-azacytidine-treated cells (dhUCM), or PBS alone, subepicardially. A group of animals with MI and no other former intervention served as controls. dhUCM cells were assessed for F-actin, myogenin and troponin-I expression. dhUCM cells appeared as binucleated cells with extensive cytoplasmic processes. These differentiated cells were F-actin and myogenin positive. Thirty days after LAD ligation, left ventricular ejection fraction and the percentage of fractional shortening improved significantly in cell-receiving animals. In addition, the amount of scar tissue was significantly reduced in hUCM and ...
Key Words. Mesenchymal stem cells • Cardiac • c-kit • Myocardial infarction •
2012
Whereas cardiac-derived c-kit ؉ stem cells (CSCs) and bone marrow-derived mesenchymal stem cells (MSCs) are undergoing clinical trials testing safety and efficacy as a cell-based therapy, the relative therapeutic and biologic efficacy of these two cell types is unknown. We hypothesized that human CSCs have greater ability than MSCs to engraft, differentiate, and improve cardiac function. We compared intramyocardial injection of human fetal CSCs (36,000) with two doses of adult MSCs (36,000 and 1,000,000) or control (phosphate buffered saline) in nonobese diabetic/severe combined immune deficiency mice after coronary artery ligation. The myocardial infarction-induced enlargement in left ventricular chamber dimensions was ameliorated by CSCs (p < .05 for diastolic and systolic volumes), as was the decline in ejection fraction (EF; p < .05). Whereas 1 ؋ 10 6 MSCs partially ameliorated ventricular remodeling and improved EF to a similar degree as CSCs, 36,000 MSCs did not influence chamber architecture or function. All cell therapies improved myocardial contractility, but CSCs preferentially reduced scar size and reduced vascular afterload. Engraftment and trilineage differentiation was substantially greater with CSCs than with MSCs. Adult-cultured c-kit ؉ CSCs were less effective than fetal, but were still more potent than high-dose MSCs. These data demonstrate enhanced CSC engraftment, differentiation, and improved cardiac remodeling and function in ischemic heart failure. MSCs required a 30-fold greater dose than CSCs to improve cardiac function and anatomy. Together, these findings demonstrate a greater potency of CSCs than bone marrow MSCs in cardiac repair.
Acta Histochemica, 2020
Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) gained importance in acute/ chronic ischemic cardiomyopathy because of their outstanding regenerative potential in various pathologic conditions. The present study was designed to determine to what extent hUC-MSCs contribute to myocardial regeneration in acute experimental myocardial infarction (MI) in rats. Methods: Animals were assigned into two groups; the control group received intramyocardial PBS injections, while the hUC-MSC group received calcein-AM-labeled 8.8 × 10 6 /kg hUC-MSCs. Three weeks following the acute MI induction, rats were sacrificed after assessing the left ventricular (LV) function using echocardiography. For the assessment of infarct size, the triphenyl tetrazolium chloride (TTC) test was used in isolated hearts. Collagen-rich scar tissue was demonstrated using Masson's trichrome staining, followed by the detection of cardiac troponin I (cTnI), α-sarcomeric actin (α-SA), von Willebrand factor (vWF), CD68 and CD206 expressions in control and cell-injected sections. Results: Echocardiography revealed a significant difference (P = 0.037) in the LV ejection fraction between groups. TTC assays demonstrated a significant difference (P = 0.006) between the groups regarding the ratio of the infarcted LV area. Calcein-AM-loaded cells were identified mostly in ischemic myocardium. Transplanted cells also expressed human-specific cTnI, providing concrete proof of transdifferentiation into cardiomyocytes, and α-SA. vWF + cells verified the neovascularization in the ischemic myocardium. Finally, a slight shift from pro-inflammatory to anti-inflammatory macrophages (CD68 + /CD206 +) was noted in both groups. Conclusions: We found that the intramyocardial transplanted hUC-MSCs engrafted and partially transdifferentiated into cardiomyocytes, reduced scar formation, and induced angiogenesis through the association of pro/ anti-inflammatory macrophages.
Stem Cells, 2007
We tested the cardiomyogenic potential of the human umbilical cord blood-derived mesenchymal stem cells (UCBM-SCs). Both the number and function of stem cells may be depressed in senile patients with severe coronary risk factors. Therefore, stem cells obtained from such patients may not function well. For this reason, UCBMSCs are potentially a new cell source for stem cell-based therapy, since such cells can be obtained from younger populations and are being routinely utilized for clinical patients. The human UCBM-SCs (5 ؋ 10 3 per cm 2 ) were cocultured with fetal murine cardiomyocytes ([CM] 1 ؋ 10 5 per cm 2 ). On day 5 of cocultivation, approximately half of the green fluorescent protein (GFP)-labeled UCBMSCs contracted rhythmically and synchronously, suggesting the presence of electrical communication between the UCBMSCs. The fractional shortening of the contracted UCBMSCs was 6.5% ؎ 0.7% (n ؍ 20). The
Stem Cells and Cloning: Advances and Applications, 2020
Background: The new therapeutic strategy of managing cardiac diseases is based on cell therapy; it highly suggests the use of multipotent mesenchymal stem/stromal cells (MSCs). MSCs widely used in researches are known to be isolated from bone marrow. However, this research seeks to use a human umbilical cord (HUC) as an alternative source of MSCs. Since HUC Wharton's jelly (WJ)-isolated MSCs originate as fetal tissue they are highly preferable for their potential advantages over other adult tissues. Methods: The researchers used enzymatic digestion to establish a primary HUC-WJisolated MSC line. Then, flow cytometry was used to characterize MSCs and hematopoietic stem cells (HSCs) markers' expression. In addition, the cardiac differentiation capacity of HUC-WJ-isolated MSCs in vitro was investigated by two protocols. Protocol-1 necessitates the dependence on merely 5-azacytidine (5-Aza), whereas in protocol-2, 5-Aza was supported by basic fibroblast growth factor (BFGF). The comparative study between the two protocols was applied by inspecting the ultrastructure of differentiated cells, measuring RT-PCR mRNA cardiac markers and the quantitative detection of cardiac proteins. Results: HUC-WJ isolated MSCs were expressed by CD90 +ve , CD105 +ve , CD106 +ve , CD45 −ve , and CD146 −ve. Remarkable TNNT1, NKX2.5, and Desmin mRNA expression and higher quantitative LDH and cTnI were detected by applying protocol-2. This same protocol-2 induced cardiac morphological features that were revealed by identifying cardiomyocyte-like cells and typical sarcomeres. Conclusion: HUC-WJ is proved to be an ethical and effective source of MSCs induced cardiac differentiation, whereas BFGF supports 5-Aza in MSCs-cardiomyocytes differentiation.