Synergistic Use of Sentinel-2 and UAV Multispectral Data to Improve and Optimize Viticulture Management (original) (raw)
Related papers
Remote Sensing, 2022
Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few studies conducted a comparison of Sentinel-2 with UAV data for crop monitoring in the context of precision agriculture. Therefore, prospects of crop monitoring for characterizing biophysical plant parameters and leaf nitrogen of wheat and barley crops were evaluated from a more practical viewpoint closer to agricultural routines. Multispectral UAV and Sentinel-2 imagery was collected over three dates in the season and compared with reference data collected at 20 sample points for plant leaf nitrogen (N), maximum plant height, mean plant height, leaf area index (LAI), and fresh biomass. Higher correlations of UAV data to the agronomic parameters were found on average than with Sentinel-2 data with a percentage increase of 6.3% for wheat and 22.2% for barley. In this regard, VIs calculated from spectral bands in the visible part performed worse for Sentinel-2 than for the UAV data. In addition, large-scale patterns, formed by the influence of an old riverbed on plant growth, were recognizable even in the Sentinel-2 imagery despite its much lower spatial resolution. Interestingly, also smaller features, such as the tramlines from controlled traffic farming (CTF), had an influence on the Sentinel-2 data and showed a systematic pattern that affected even semivariogram calculation. In conclusion, Sentinel-2 imagery is able to capture the same large-scale pattern as can be derived from the higher detailed UAV imagery; however, it is at the same time influenced by management-driven features such as tramlines, which cannot be accurately georeferenced. In consequence, agronomic parameters were better correlated with UAV than with Sentinel-2 data. Crop growers as well as data providers from remote sensing services may take advantage of this knowledge and we recommend the use of UAV data as it gives additional information about management-driven features. For future perspective, we would advise fusing UAV with Sentinel-2 imagery taken early in the season as it can integrate the effect of agricultural management in the subsequent absence of high spatial resolution data to help improve crop monitoring for the farmer and to reduce costs.
OENO One, 2020
Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management. These remote sensing techniques are mainly exploited to get the Normalized Difference Vegetation Index (NDVI), which is useful for describing the morpho-vegetational characteristics of vineyards. This study was conducted in a vineyard in Tuscany (Italy) during the 2017, 2018 and 2019 seasons. Ground data were acquired to detect some agronomic variables such as yield (kg/vine), total soluble solids (TSS), and pruning weight (kg/vine). Remote sensed multispectral images acquired by UAV and Sentinel-2 (S2) satellite platform were used to assess the analysis of the vegetative variability. The UAV N...
Sentinel-2 Data for Precision Agriculture?—A UAV-Based Assessment
Sensors
An approach of exploiting and assessing the potential of Sentinel-2 data in the context of precision agriculture by using data from an unmanned aerial vehicle (UAV) is presented based on a four-year dataset. An established model for the estimation of the green area index (GAI) of winter wheat from a UAV-based multispectral camera was used to calibrate the Sentinel-2 data. Large independent datasets were used for evaluation purposes. Furthermore, the potential of the satellite-based GAI-predictions for crop monitoring and yield prediction was tested. Therefore, the total absorbed photosynthetic radiation between spring and harvest was calculated with satellite and UAV data and correlated with the final grain yield. Yield maps at the same resolution were generated by combining yield data on a plot level with a UAV-based crop coverage map. The best tested model for satellite-based GAI-prediction was obtained by combining the near-, infrared- and Red Edge-waveband in a simple ratio (R2 ...
Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture
Precision Viticulture is experiencing substantial growth thanks to the availability of improved and cost-effective instruments and methodologies for data acquisition and analysis, such as Unmanned Aerial Vehicles (UAV), that demonstrated to compete with traditional acquisition platforms, such as satellite and aircraft, due to low operational costs, high operational flexibility and high spatial resolution of imagery. In order to optimize the use of these technologies for precision viticulture, their technical, scientific and economic performances need to be assessed. The aim of this work is to compare NDVI surveys performed with UAV, aircraft and satellite, to assess the capability of each platform to represent the intra-vineyard vegetation spatial variability. NDVI images of two Italian vineyards were acquired simultaneously from different multi-spectral sensors onboard the OPEN ACCESS Remote Sens. 2015, 7 2972 three platforms, and a spatial statistical framework was used to assess their degree of similarity. Moreover, the pros and cons of each technique were also assessed performing a cost analysis as a function of the scale of application. Results indicate that the different platforms provide comparable results in vineyards characterized by coarse vegetation gradients and large vegetation clusters. On the contrary, in more heterogeneous vineyards, low-resolution images fail in representing part of the intra-vineyard variability. The cost analysis showed that the adoption of UAV platform is advantageous for small areas and that a break-even point exists above five hectares; above such threshold, airborne and then satellite have lower imagery cost.
Remote Sensing, 2019
Several remote sensing technologies have been tested in precision viticulture to characterize vineyard spatial variability, from traditional aircraft and satellite platforms to recent unmanned aerial vehicles (UAVs). Imagery processing is still a challenge due to the traditional row-based architecture, where the inter-row soil provides a high to full presence of mixed pixels. In this case, UAV images combined with filtering techniques represent the solution to analyze pure canopy pixels and were used to benchmark the effectiveness of Sentinel-2 (S2) performance in overhead training systems. At harvest time, UAV filtered and unfiltered images and ground sampling data were used to validate the correlation between the S2 normalized difference vegetation indices (NDVIs) with vegetative and productive parameters in two vineyards (V1 and V2). Regarding the UAV vs. S2 NDVI comparison, in both vineyards, satellite data showed a high correlation both with UAV unfiltered and filtered images (...
Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery
Remote Sensing, 2020
The use of unmanned aerial vehicles (UAVs) for remote sensing applications in precision viticulture significantly increased in the last years. UAVs’ capability to acquire high spatiotemporal resolution and georeferenced imagery from different sensors make them a powerful tool for a better understanding of vineyard spatial and multitemporal heterogeneity, allowing the estimation of parameters directly impacting plants’ health status. In this way, the decision support process in precision viticulture can be greatly improved. However, despite the proliferation of these innovative technologies in viticulture, most of the published studies rely only on data from a single sensor in order to achieve a specific goal and/or in a single/small period of the vineyard development. In order to address these limitations and fully exploit the advantages offered by the use of UAVs, this study explores the multi-temporal analysis of vineyard plots at a grapevine scale using different imagery sensors....
Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture
Sensors
New technologies for management, monitoring, and control of spatio-temporal crop variability in precision viticulture scenarios are numerous. Remote sensing relies on sensors able to provide useful data for the improvement of management efficiency and the optimization of inputs. unmanned aerial systems (UASs) are the newest and most versatile tools, characterized by high precision and accuracy, flexibility, and low operating costs. The work aims at providing a complete overview of the application of UASs in precision viticulture, focusing on the different application purposes, the applied equipment, the potential of technologies combined with UASs for identifying vineyards’ variability. The review discusses the potential of UASs in viticulture by distinguishing five areas of application: rows segmentation and crop features detection techniques; vineyard variability monitoring; estimation of row area and volume; disease detection; vigor and prescription maps creation. Technological i...
Comparing vineyard imagery acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) platform
OENO One
Aim: The recent availability of Sentinel-2 satellites has led to an increasing interest in their use in viticulture. The aim of this short communication is to determine performance and limitation of a Sentinel-2 vegetation index in precision viticulture applications, in terms of correlation and variability assessment, compared to the same vegetation index derived from an unmanned aerial vehicle (UAV). Normalised difference vegetation index (NDVI) was used as reference vegetation index.Methods and Results: UAV and Sentinel-2 vegetation indices were acquired for 30 vineyard blocks located in the south of France without inter-row grass. From the UAV imagery, the vegetation index was calculated using both a mixed pixels approach (both vine and inter-row) and from pure vine-only pixels. In addition, the vine projected area data were extracted using a support vector machine algorithm for vineyard segmentation. The vegetation index was obtained from Sentinel-2 imagery obtained at approxima...
Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment
2019
In agriculture, remotely sensed data play a crucial role in providing valuable information on crop and soil status to perform effective management. Several spectral indices have proven to be valuable tools in describing crop spatial and temporal variability. In this paper, a detailed analysis and comparison of vineyard multispectral imagery, provided by decametric resolution satellite and low altitude Unmanned Aerial Vehicle (UAV) platforms, is presented. The effectiveness of Sentinel-2 imagery and of high-resolution UAV aerial images was evaluated by considering the well-known relation between the Normalised Difference Vegetation Index (NDVI) and crop vigour. After being pre-processed, the data from UAV was compared with the satellite imagery by computing three different NDVI indices to properly analyse the unbundled spectral contribution of the different elements in the vineyard environment considering: (i) the whole cropland surface; (ii) only the vine canopies; and (iii) only the inter-row terrain. The results show that the raw s resolution satellite imagery could not be directly used to reliably describe vineyard variability. Indeed, the contribution of inter-row surfaces to the remotely sensed dataset may affect the NDVI computation, leading to biased crop descriptors. On the contrary, vigour maps computed from the UAV imagery, considering only the pixels representing crop canopies, resulted to be more related to the in-field assessment compared to the satellite imagery. The proposed method may be extended to other crop typologies grown in rows or without intensive layout, where crop canopies do not extend to the whole surface or where the presence of weeds is significant.
2021
The scope of this work is to compare Sentinel-2 and unmanned aerial vehicles (UAV) imagery from northern Greece for use in precision agriculture by implementing statistical analysis and 2D visualization. Surveys took place on five dates with a difference between the sensing dates for the two techniques ranging from 1 to 4 days. Using the acquired images, we initially computed the maps of the Normalized Difference Vegetation Index (NDVI), then the values of this index for fifteen points and four polygons (areas). The UAV images were not resampled, aiming to compare both techniques based on their initial standards, as they are used by the farmers. Similarities between the two techniques are depicted on the trend of the NDVI means for both satellite and UAV techniques, considering the points and the polygons. The differences are in the a) mean NDVI values of the points and b) range of the NDVI values of the polygons probably because of the difference in the spatial resolution of the tw...