Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach (Preprint) (original) (raw)

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

Korean Journal of Radiology

Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

Quantifying prognosis severity of COVID-19 patients from deep learning based analysis of CT chest images

Multimedia Tools and Applications, 2022

The COVID-19 pandemic has affected all the countries in the world with its droplet spread mode. The colossal amount of cases has strained all the healthcare systems due to the serious nature of infections especially for people with comorbidities. A very high specificity Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) test is the principal technique in use for diagnosing the COVID-19 patients. Also, CT scans have helped medical professionals in patient severity estimation & progression tracking of COVID-19 virus. In study we present our own extensible COVID-19 viral infection tracking prognosis technique. It uses annotated dataset of CT chest scan slice images created with the help of medical professionals. The annotated dataset contains bounding box coordinates of different features for COVID-19 detection like ground glass opacities, crazy paving pattern, consolidations, lesions etc. We qualitatively identify the severity of the patient for later prognosis stages in our study to assist medical staff for patient prioritization. First we detected COVID-19 positive patients with pre-trained Siamese Neural Network (SNN) which obtained 87.6% accuracy, 87.1% F1-Score & 95.1% AUC scores. These metrics were achieved after removal of 40% quantitatively highly similar images from the COVID-CT dataset. This reduced dataset was further medically annotated with COVID-19 features for bounding box detection. After this we assigned severity scores to detected COVID-19 features and calculated the cumulative severity score for COVID-19 patients. For qualitative patient prioritization with prognosis clinical assistance information, we finally converted this score into a multi-classification problem which obtained 47% weighted-average F1-score.

Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

Nature Machine Intelligence, 2021

Machine learning methods offer great promise for fast and accurate detection and prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest radiographs (CXR) and chest computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we consider all published papers and preprints, for the period from 1 January 2020 to 3 October 2020, which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are considered. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in this systematic review. Our review finds that none of the models identified are of ...

A chest radiography-based artificial intelligence deep-learning model to predict severe Covid-19 patient outcomes: the CAPE (Covid-19 AI Predictive Engine) Model

2020

Keywords: predictive model; prognosis; COVID-19; SARS-CoV-2; Deep-learning; Artificial intelligence; Chest radiograph Background: Chest radiography may be used together with deep-learning models to prognosticate COVID-19 patient outcomes Purpose: To evaluate the performance of a deep-learning model for the prediction of severe patient outcomes from COVID-19 pneumonia on chest radiographs. Methods: A deep-learning model (CAPE: Covid-19 AI Predictive Engine) was trained on 2337 CXR images including 2103 used only for validation while training. The prospective test set consisted of CXR images (n=70) obtained from RT-PCR confirmed COVID-19 pneumonia patients between 1 January and 30 April 2020 in a single center. The radiographs were analyzed by the AI model. Model performance was obtained by receiver operating characteristic curve analysis. Results: In the prospective test set, the mean age of the patients was 46 (+/- 16.2) years (84.2% male). The deep-learning model accurately predict...

Predicting Clinical Outcomes in COVID-19 using Radiomics and Deep Learning on Chest Radiographs: A Multi-Institutional Study

2020

We predict mechanical ventilation requirement and mortality using computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) patients. This two-center, retrospective study analyzed 530 deidentified CXRs from 515 COVID-19 patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between March and August 2020. DL and machine learning classifiers to predict mechanical ventilation requirement and mortality were trained and evaluated using patient CXRs. A novel radiomic embedding framework was also explored for outcome prediction. All results are compared against radiologist grading of CXRs (zone-wise expert severity scores). Radiomic and DL classification models had mAUCs of 0.78±0.02 and 0.81±0.04, compared with expert scores mAUCs of 0.75±0.02 and 0.79±0.05 for mechanical ventilation requirement and mortality prediction, respectively. Combined classifiers using both radiomics and expert severity scores resulted in mAUCs o...

Diagnosis of COVID-19 Using CT image Radiomics Features: A Comprehensive Machine Learning Study Involving 26,307 Patients

2021

PurposeTo derive and validate an effective radiomics-based model for differentiation of COVID-19 pneumonia from other lung diseases using a very large cohort of patients.MethodsWe collected 19 private and 5 public datasets, accumulating to 26,307 individual patient images (15,148 COVID-19; 9,657 with other lung diseases e.g. non-COVID-19 pneumonia, lung cancer, pulmonary embolism; 1502 normal cases). Images were automatically segmented using a validated deep learning (DL) model and the results carefully reviewed. Images were first cropped into lung-only region boxes, then resized to 296×216 voxels. Voxel dimensions was resized to 1×1×1mm3 followed by 64-bin discretization. The 108 extracted features included shape, first-order histogram and texture features. Univariate analysis was first performed using simple logistic regression. The thresholds were fixed in the training set and then evaluation performed on the test set. False discovery rate (FDR) correction was applied to the p-va...

Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

Nature Communications

The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a ref...

Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features

Journal of Personalized Medicine

Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models consid...

Fine-Grained Assessment of COVID-19 Severity Based on Clinico-Radiological Data Using Machine Learning

International Journal of Environmental Research and Public Health

Background: The severe and critical cases of COVID-19 had high mortality rates. Clinical features, laboratory data, and radiological features provided important references for the assessment of COVID-19 severity. The machine learning analysis of clinico-radiological features, especially the quantitative computed tomography (CT) image analysis results, may achieve early, accurate, and fine-grained assessment of COVID-19 severity, which is an urgent clinical need. Objective: To evaluate if machine learning algorithms using CT-based clinico-radiological features could achieve the accurate fine-grained assessment of COVID-19 severity. Methods: The clinico-radiological features were collected from 78 COVID-19 patients with different severities. A neural network was developed to automatically measure the lesion volume from CT images. The severity was clinically diagnosed using two-type (severe and non-severe) and fine-grained four-type (mild, regular, severe, critical) classifications, re...

Predicting clinical outcomes in COVID-19 using radiomics on chest radiographs

The British Journal of Radiology, 2021

Objectives For optimal utilization of healthcare resources, there is a critical need for early identification of COVID-19 patients at risk of poor prognosis as defined by the need for intensive unit care and mechanical ventilation. We tested the feasibility of chest X-ray (CXR)-based radiomics metrics to develop machine-learning algorithms for predicting patients with poor outcomes. Methods In this Institutional Review Board (IRB) approved, Health Insurance Portability and Accountability Act (HIPAA) compliant, retrospective study, we evaluated CXRs performed around the time of admission from 167 COVID-19 patients. Of the 167 patients, 68 (40.72%) required intensive care during their stay, 45 (26.95%) required intubation, and 25 (14.97%) died. Lung opacities were manually segmented using ITK-SNAP (open-source software). CaPTk (open-source software) was used to perform 2D radiomics analysis. Results Of all the algorithms considered, the AdaBoost classifier performed the best with AUC ...