Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach (Preprint) (original) (raw)

BACKGROUND Most of the mortality resulting from COVID-19 has been associated with severe disease. Effective treatment of severe cases remains a challenge due to the lack of early detection of the infection. OBJECTIVE This study aimed to develop an effective prediction model for COVID-19 severity by combining radiological outcome with clinical biochemical indexes. METHODS A total of 46 patients with COVID-19 (10 severe, 36 nonsevere) were examined. To build the prediction model, a set of 27 severe and 151 nonsevere clinical laboratory records and computerized tomography (CT) records were collected from these patients. We managed to extract specific features from the patients’ CT images by using a recently published convolutional neural network. We also trained a machine learning model combining these features with clinical laboratory results. RESULTS We present a prediction model combining patients’ radiological outcomes with their clinical biochemical indexes to identify severe COVI...