EC330, a small-molecule compound, is a potential novel inhibitor of LIF signaling (original) (raw)

EC359: A First-in-Class Small-Molecule Inhibitor for Targeting Oncogenic LIFR Signaling in Triple-Negative Breast Cancer

Molecular Cancer Therapeutics, 2019

Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patient-derived primary TNBC explants. EC359 exhibits distin...

LIF/LIFR oncogenic signaling is a novel therapeutic target in endometrial cancer

Cell Death Discovery

Endometrial cancer (EC) is the fourth most common cancer in women. Advanced-stage EC has limited treatment options with a poor prognosis. There is an unmet need for the identification of actionable drivers for the development of targeted therapies in EC. Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a major role in cancer progression, metastasis, stemness, and therapy resistance. However, little is known about the functional significance of the LIF/LIFR axis in EC progression. In this study using endometrial tumor tissue arrays, we identified that expression of LIF, LIFR is upregulated in EC. Knockout of LIFR using CRISPR/Cas9 in two different EC cells resulted in a significant reduction of their cell viability and cell survival. In vivo studies demonstrated that LIFR-KO significantly reduced EC xenograft tumor growth. Treatment of established and primary patient-derived EC cells with a novel LIFR inhibitor, EC359 resulted in the reduction of cell viability with...

Leukemia Inhibitory Factor (LIF), Cardiotrophin-1, and Oncostatin M Share Structural Binding Determinants in the Immunoglobulin-like Domain of LIF Receptor

Journal of Biological Chemistry, 2003

Leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and oncostatin M (OSM) are four helix bundle cytokines acting through a common heterodimeric receptor composed of gp130 and LIF receptor (LIFR). Binding to LIFR occurs through a binding site characterized by an FXXK motif located at the N terminus of helix D (site III). The immunoglobulin (Ig)-like domain of LIFR was modeled, and the physico-chemical properties of its Connolly surface were analyzed. This analysis revealed an area displaying properties complementary to those of the LIF site III. Two residues of the Ig-like domain of LIFR, Asp 214 and Phe 284 , formed a mirror image of the FXXK motif. Engineered LIFR mutants in which either or both of these two residues were mutated to alanine were transfected in Ba/F3 cells already containing gp130. The F284A mutation impaired the biological response induced by LIF and CT-1, whereas the response to OSM remained unchanged. The Asp 214 mutation did not alter the functional responses. The D214A/F284A double mutation, however, totally impaired cellular proliferation to LIF and CT-1 and partially impaired OSM-induced proliferation with a 20fold increase in EC 50. These results were corroborated by the analysis of STAT3 phosphorylation and Scatchard analysis of cytokine binding to Ba/F3 cells. Molecular modeling of the complex of LIF with the Ig-like domain of LIFR provides a clue for the superadditivity of the D214A/ F284A double mutation. Our results indicate that LIF, CT-1, and OSM share an overlapping binding site located in the Ig-like domain of LIFR. The different behaviors of LIF and CT-1, on one side, and of OSM, on the other side, can be related to the different affinity of their site III for LIFR. The cytokines of the IL-6 1 family are multifunctional proteins that regulate cell growth, differentiation, and cellular * This work was supported in part by grants from l'Association Française contre les Myopathies, la Ligue Nationale contre le Cancer, and the Post-Génome program of Contrat Etat-Région des Pays de la Loire.

LIFR inhibition enhances the therapeutic efficacy of HDAC inhibitors in triple negative breast cancer

Communications Biology

Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficac...

In Silico Investigation and Docking Studies of E2F3 Tumor Marker: Discovery and Evaluation of Potential Inhibitors for Prostate and Breast Cancer

E2F3 encodes a transcription factor important for cell cycle regulation and DNA replication. It plays a significant role in the development of various types of human cancer. Genomics and proteomics features of the tumor marker have a pronounced significance in the pharmainformatics studies. The crystal structure of E2F3 is not available in any structural database; hence a 3D structure is very essential for structural studies and discovery of potential inhibitors against tumour proteins. In this study we modelled a 3D structure of E2F3 by X-ray crystal structure of Bovine Bc1 with Azoxystrobin of Bos taurus (PDB ID: 1SQB, Chain B) used as the template. Our study found that E2F3 predominantly consists of α helix. The RMSD value of modelled protein was found to be 0.5 A o and steriochemical validation shows 86. 1% residues are in allowed region of Ramachandran plot. Further validation was done by various empirical force fields. Overall quality factor of the model identified to be 57.36 and error values of individual residues are negligible. The modeled protein was submitted to Protein Model Database and can be downloaded with PMDID 0076554.With the help of docking studies the best ligand against E2F3 was found to be Vinblastine, an antitumor alkaloid isolated from Vinca rosea, with binding energy -4558.33.The ligand interacts with the modeled protein at residues Glu-432, Asp-433, Tyr-434, Leu-435 and 436.The other best inhibitors identified from our study were Oncovin, Navelbine, Taxol and Taxotere. The investigation concluded that these drugs could be used as the potential inhibitors against E2F3 tumor marker in prostate and breast cancer.

Discovery of BAR502, as potent steroidal antagonist of leukemia inhibitory factor receptor for the treatment of pancreatic adenocarcinoma

Frontiers in Oncology

IntroductionThe leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1).MethodsHerein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. ResultsThe transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile...

Examination of pathways involved in leukemia inhibitory factor (LIF)-induced cell growth arrest using label-free proteomics approach

Leukemia inhibitory factor (LIF) is a multifunctional highly glycosylated protein, synthesized and secreted in various body tissues. Besides the abundance in multiple organs, the molecular mechanism underlying the LIF interactions for cell survival and polarity is poorly understood. In the present study, high-resolution LC-MS/MS based LFQ approach identified 2083 proteins with the overall PSM as 16,032. This proteomics data reviles that LIF promotes the AKT-mTOR signaling pathway. It induces cell growth arrest by an intracellular pathways loop to increase the half-life of the cell. Bioinformatics-based enrichment analysis revealed the involvement of LIF interacting partners in cell survival through increasing the cell cycle length. The anti-proliferative effect of LIF was confirmed by BrdU, MTT and Caspase 3/7 assays and further validated by RT-qPCR. Till date to the best of our knowledge, this is the first study that elucidates LIF-mediated cascade of activation of MEK/ERK, Ras, mTOR, Hippo, and RAP1 pathways. This study further expands the repertoire of signaling pathways known to be subject to activation by LIF. These multiple involvements of pathways through autocrine-paracrine mediated cell cycle arrest additionally suggests a novel means for amplification of a growth arrest stimulus from LIF and its homolog's receptors. Biological significance: Leukemia inhibitory factor (LIF) is the polyfunctional cytokine and highly pleiotropic member of the interleukin-6 family. It utilizes a receptor that consists of the LIF receptor b and gp130 and displays diverse effects on target cells. Despite well-known signal transduction mechanisms (JAK/STAT, MAPK, and PI3K) LIF also contains paradoxically opposing influences in several cell types which includes cellular stimulation, inhibition, proliferation , differentiation, and survival. LIF1 is also undergoing clinical trials as a driving force for the embryo implan-tation in the uterus in women who fail to become pregnant. As LIF can act on the broad spectrum of cell types, it is necessary to understand the basic response mechanism. The available non-canonical regulatory pathways and molecular mechanism associated with LIF are poorly explained. Therefore, we have performed the global proteome analysis of LIF-mediated autocrine-paracrine signaling. The obtained data were examined through advanced bioin-formatics tools and LIF inducible changes in terms of pathways were elucidated. The result showed the involvement of cluster of proteins maintaining the Ras/Rap1/STAT3/Hippo pathways which modify the protein component machinery of core histone complexes. This report describes the involvement of proteins responsible for cell growth and progression and defines the LIF-mediated novel autocrine-paracrine signaling loop for cell growth arrest.

LIF-Induced STAT3 Signaling in Murine versus Human Embryonal Carcinoma (EC) Cells

Experimental Cell Research, 2002

require activation of STAT3. In contrast, LIF does not activate STAT3, ERK, or the gp130 receptor in human N tera-2/D1 EC cells, although all receptor components are expressed. The negative feedback protein suppressor of cytokine signaling 1 (SOCS-1) is constitutively expressed in N tera-2/D1 EC cells, suggesting that LIF signal transduction is inhibited by elevated levels of SOCS-1 expression. © 2002 Elsevier Science (USA)

Conjugated Linoleic Acid Blocks Estrogen Signaling in Human Breast Cancer Cells

The Journal of Nutrition

Conjugated linoleic acid (CLA), a mixture of positional and geometric isomers of linoleic acid found in dairy products and meat from ruminants, has been widely shown to possess anticarcinogenic activity against breast cancer both in vitro and in animal models. However, little information is available concerning the mechanisms of the antitumor effects of these compounds. In this study, we investigated whether CLA has direct antiestrogenic activity in estrogen receptor positive (ERϩ) breast cancer cells. Treatment of the ERϩ cell line, MCF-7, with 5 purified CLA isomers as well as "mixed" CLA showed a dose-dependent growth inhibition with the 9cis,11cis and 9cis,11trans being the most and least potent isomers, respectively. In assessing effects on a number of variables that play obligatory roles in the estrogen signaling pathway, we determined that CLA treatment downregulated ER␣ expression at both mRNA and protein levels and decreased binding activity of nuclear protein to a canonical estrogen response element (ERE v). Using a reporter gene construct (ERE v-tk-Luc) that was transiently transfected into MCF-7 cells, we also demonstrated inhibition of promoter activity by CLA that was directly mediated by blockage of activity through the ERE. The results indicated that the order of potency of the CLA isomers for inhibiting activation of ERE v was similar to that demonstrated for their antiproliferative activity on MCF-7 cells. Taken together, these findings demonstrate that CLA compounds possess potent antiestrogenic properties that may at least partly account for their antitumor activity on breast cancer cells.

LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers.

Leukaemia inhibitory factor (LIF) has been recently identified as a p53 target gene, which mediates the role of p53 in maternal implantation under normal physiological conditions. Here we report that LIF is a negative regulator of p53; LIF downregulates p53 protein levels and function in human colorectal cancer (CRC) cells. The downregulation of p53 by LIF is mediated by the activation of Stat3, which transcriptionally induces inhibitor of DNA-binding 1 (ID1). ID1 upregulates MDM2, a key negative regulator of p53, and promotes p53 protein degradation. LIF is overexpressed in a large percentage of CRCs. LIF overexpression promotes cellular resistance towards chemotherapeutic agents in cultured CRC cells and colorectal xenograft tumours in a largely p53-dependent manner. Overexpression of LIF is associated with a poor prognosis in CRC patients. Taken together, LIF is a novel negative regulator of p53, overexpression of LIF is an important mechanism for the attenuation of p53, which promotes chemoresistance in CRCs.