Modelling the spatial-temporal distribution of tsetse (Glossina pallidipes) as a function of topography and vegetation greenness in the Zambezi Valley of Zimbabwe (original) (raw)

Abstract

In this study, we developed a stable and temporally dynamic model for predicting tsetse (Glossina pallidipes) habitat distribution based on a remotely sensed Normalised Difference Vegetation Index (NDVI), an indicator of vegetation greenness, and topographic variables, specifically, elevation and topographic position index (TPI). We also investigated the effect of drainage networks on habitat suitability of tsetse as well as factors that may influence changes in area of suitable tsetse habitat. We used data on tsetse presence collected in North western Zimbabwe during 1998 to develop a habitat prediction model using Maxent (Training AUC=0.751, test AU=0.752). Results of the Maxent model showed that the probability of occurrence of G. pallidipes decreased as TPI increased while an increase in elevation beyond 800 m resulted in a decrease in the probability of occurrence. High probabilities (>50%) of occurrence of G. pallidipes were associated with NDVI between high 0.3 and 0.6. Based on the good predictive ability of the model, we fitted this model to environmental data of six different years, 1986, 1991, 1993, 2002, 2007 and 2008 to predict the spatial distribution of tsetse presence in those years and to quantify any trends or changes in the tsetse distribution, which may be a function of changes in suitable tsetse habitat. The results showed that the amount of suitable G. pallidipes habitat significantly decreased (r 2 0.799, p=0.007) for the period 1986 and 2008 due to the changes in the amount of vegetation cover as measured by NDVI over time in years. Using binary logistic regression, the probability of occurrence of suitable tsetse habitat decreased with increased distance from drainage lines. Overall, results of this study suggest that temporal changes in vegetation cover captured by using NDVI can aptly capture variations in habitat suitability of tsetse over time. Thus integration of remotely sensed data and other landscape variables enhances assessment of temporal changes in habitat suitability of tsetse which is crucial in the management and control of tsetse.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (32)

  1. Adam, Y., Marcotty, T., Cecchi, G., Mahama, C. I., Solano, P., Bengaly, Z. & Van Den Bossche, P. (2012) Bovine trypanosomosis in the Upper West Region of Ghana: Entomological, parasitological and serological cross-sectional surveys. Research in Veterinary Science, 92, 462-468.
  2. Agresti, A. & Coull, B. A. (1998) Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician, 52, 119-126.
  3. Atkinson, P. M. & Graham, A. J. (2006) Issues of scale and uncertainty in the global remote sensing of disease. . Advances in Parasitology, 62, 79-118.
  4. Batchelor, N. A., Atkinson, P. M., Gething, P. W., Picozzi, K., Févre, E. M., Kakembo, A. S. L. & Welburn, S. C. (2009) Spatial Predictions of Rhodesian Human African Trypanosomiasis (Sleeping Sickness) Prevalence in Kaberamaido and Dokolo, Two Newly Affected Districts of Uganda. PLoS Neglected Tropical Disease, 3.
  5. Baudron, F., Corbeels, M., Andersson, J. A., Giller, K. E. & Sibanda, M. (2010) Delineating the drivers of waning wildlife habitat: the predominance of cotton farming on the fringe of protected areas in the Mid Zambezi Valley, Zimbabwe. Biological Conservation, 144, 1481-1493.
  6. Cecchi, G., Mattioli, R., Slingenbergh, J. & De La Rocque, S. (2008) Land cover and tsetse fly distributions in sub-Saharan Africa. Medical Veterinary Entomology, 22, 264-373.
  7. Devisser, M., Messina, J., Moore, N., Lusch, D. & Maitima, J. (2010) A dynamic species distribution model of Glossina subgenus Morsitans: The identification of tsetse reservoirs and refugia. Ecosphere, 1.
  8. Dicko, A. H., Lancelot, R., Seck, M. T., Guerrini, L., Sall, B., Lof, M., Vreyseng, M. J. B., Lefrançois, T., Fonta, W. M., Peck, S. L. & Bouyer, J. (2014) Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal. Proceedings of the American Academy of Sciences.
  9. Ducheyne, E., Mweempwa, C., De Pus, C., Vernieuwe, H., De Deken, R., Hendrickx, G. & Van Den Bossche, P. (2009) The impact of habitat fragmentation on tsetse abundance on the plateau of eastern Zambia. Preventive Veterinary Medicine, 91, 11-18.
  10. Guerrini, L., Bord, J. P., Ducheyne, E. & Bouyer, J. (2008) Fragmentation Analysis for Prediction of Suitable Habitat for Vectors: Example of Riverine Tsetse Flies in Burkina Faso. Journal of Medical Entomology, 15, 1180-1186.
  11. Hay, S. I., Packer, M. J. & Rogers, D. J. (1997) The impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease. International Journal of Remote Sensing, 18, 2899 -2930.
  12. Holmes, P. (2013) Tsetse-transmitted trypanosomes -Their biology, disease impact and control. Journal of Invertebrate Pathology, 112, S11-S14.
  13. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. & Ferreira, L. G. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213.
  14. Kitron, U., Otieno, L., Hungerford, L., Odulaja, A. & Brigham, W. (1996) Spatial analysis of the distribution of tsetse flies in the Lambwe Valley ,Kenya, using Landsat TM satellite imagery and GIS. Journal of Animal Ecology, 65, 371- 380.
  15. Matawa, F., Murwira, A. & Schmidt, K. S. (2012) Explaining elephant (Loxodonta africana) and buffalo (Syncerus caffer) spatial distribution in the Zambezi Valley using maximum entropy modelling. Ecological Modelling, 242, 189-197.
  16. Matawa, F., Murwira, K. & Shereni, W. (2013) Modelling the Distribution of Suitable Glossina Spp. Habitat in the North Western parts of Zimbabwe Using Remote Sensing and Climate Data. Geoinformatics and Geostatistics: An Overview, S1. Munang'andu, M. H., Siamudaala, V., Munyeme, M. & Shimumbo Nalubamba, K. (2012) A Review of Ecological Factors Associated with the Epidemiology of Wildlife Trypanosomiasis in the Luangwa and Zambezi Valley Ecosystems of Zambia. Interdisciplinary Perspectives on Infectious Diseases, 2012, doi:10.1155/2012/372523.
  17. Odulaja, A. & Mohamed-Ahmed, M. M. (2001) Modelling the trappability of tsetse, Glossina fuscipes fuscipes, in relation to distance from their natural habitats. Ecological Modelling, 143, 183-189.
  18. Parolo, G., Rossi, G. & Ferrarini, A. (2008) Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology, 45, 1410-1418.
  19. Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225- 245.
  20. Pender, J., Mills, A. & Rosenburg, L. (1997) Impact of tsetse control on land use in the semi-arid zone of Zimbabwe. Phase 2: Analysis of land use change by remote sensing imagery. NRI Bulletin. Chatham, Natural Resources Institute.
  21. Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231-259.
  22. Phillips, S. J. & Dudik, M. (2004) A maximum entropy approach to species distribution modeling. 21st International Conference on Machine Learning. Banff, Canada.
  23. Pittiglio, C., Skidmore, A. K., Van Gils, H. A. M. J. & Prins, H. H. T. (2012) Identifying transit corridors for elephant using a long time-series. International Journal of Applied Earth Observation and Geoinformation, 14, 61-72.
  24. Robinson, T., Rogers, D. & Williams, B. (1997) Mapping tsetse habitat suitability in the common fly belt of Southern Africa using multivariate analysis of climate and remotely sensed vegetation data. Medical and Veterinary Entomology, 11, 235-245.
  25. Rogers, D. J., Hay, S. I. & Packer, M. J. (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Annals of Tropical Medicine and Parasitology, 90, 225-241.
  26. Rogers, D. J., Hay, S. I. & Randolph, S. E. (2000) Satellites, space, time and the African trypanosomiases. Advances in Parasitology. Academic Press.
  27. Shereni, W. (1990) Strategic and tactical developments in tsetse control in Zimbabwe (1981-1989). International Journal of Tropical Insect Science, 11, 399-409.
  28. Sibanda, M. & Murwira, A. (2012a) Cotton fields drive elephant habitat fragmentation in the Mid Zambezi Valley, Zimbabwe. International Journal of Applied Earth Observation and Geoinformation, 19, 286-297.
  29. Sibanda, M. & Murwira, A. (2012b) The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes of Southern Africa. International Journal of Remote Sensing, 33, 4841-4855.
  30. Terblanche, J. S., Clusella-Trullas, S., Deere, J. A. & Chown, S. L. (2008) Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): Implications for forecasting climate change impacts. Journal of Insect Physiology, 54, 114-127.
  31. Van Den Bossche, P., De La Rocque, S., Hendrickx, G. & Bouyer, J. (2010) A changing environment and the epidemiology of tsetse-transmitted livestock trypanosomiasis. Trends in Parasitology, 26, 236-243.
  32. Welburn, S. C., Coleman, P. G., Maudlin, I., Fãvre, E. M., Odiit, M. & Eisler, M. C. (2006) Crisis, what crisis? Control of Rhodesian sleeping sickness. Trends in Parasitology, 22, 123-128.