Senescent Carcinoma-associated Fibroblasts Upregulate IL8 to Enhance Pro-metastatic Phenotypes (original) (raw)

Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival

Cancer Cell, 2014

Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete aSMA + myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC stage led to invasive, undifferentiated tumors with enhanced hypoxia, epithelial-to-mesenchymal transition, and cancer stem cells, with diminished animal survival. In PDAC patients, fewer myofibroblasts in their tumors also correlated with reduced survival. Suppressed immune surveillance with increased CD4 + Foxp3 + Tregs was observed in myofibroblast-depleted mouse tumors. Although myofibroblast-depleted tumors did not respond to gemcitabine, anti-CTLA4 immunotherapy reversed disease acceleration and prolonged animal survival. This study underscores the need for caution in targeting carcinoma-associated fibroblasts in PDAC.

2008;68:918-926. Cancer Res Tumor Progression Cancer-Associated Stromal Fibroblasts Promote Pancreatic

Pancreatic adenocarcinoma is characterized by a dense background of tumor associated stroma originating from abundant pancreatic stellate cells. The aim of this study was to determine the effect of human pancreatic stellate cells (HPSC) on pancreatic tumor progression. HPSCs were isolated from resected pancreatic adenocarcinoma samples and immortalized with telomerase and SV40 large T antigen. Effects of HPSC conditioned medium (HPSC-CM) on in vitro proliferation, migration, invasion, soft-agar colony formation, and survival in the presence of gemcitabine or radiation therapy were measured in two pancreatic cancer cell lines. The effects of HPSCs on tumors were examined in an orthotopic murine model of pancreatic cancer by co-injecting them with cancer cells and analyzing growth and metastasis. HPSC-CM dose-dependently increased BxPC3 and Panc1 tumor cell proliferation, migration, invasion, and colony formation. Furthermore, gemcitabine and radiation therapy were less effective in tumor cells treated with HPSC-CM. HPSC-CM activated the mitogen-activated protein kinase and Akt pathways in tumor cells. Co-injection of tumor cells with HPSCs in an orthotopic model resulted in increased primary tumor incidence, size, and metastasis, which corresponded with the proportion of HPSCs. HPSCs produce soluble factors that stimulate signaling pathways related to proliferation and survival of pancreatic cancer cells, and the presence of HPSCs in tumors increases the growth and metastasis of these cells. These data indicate that stellate cells have an important role in supporting and promoting pancreatic cancer. Identification of HPSC-derived factors may lead to novel stroma-targeted therapies for pancreatic cancer. [Cancer Res 2008;68(3):918-26]

IL-8 Signaling Plays a Critical Role in the Epithelial-Mesenchymal Transition of Human Carcinoma Cells

Cancer Research, 2011

The switch of tumor cells from an epithelial to a mesenchymal-like phenotype (designated as epithelial-to-mesenchymal transition, EMT) is known to induce tumor cell motility and invasiveness, therefore promoting metastasis of solid carcinomas. While multiple studies have focused on elucidating the signaling events that initiate this phenotypic switch, there has been so far no characterization of the pattern of soluble mediators released by tumor cells undergoing EMT, and the potential impact that this phenotypic switch could have on the remodeling of the tumor microenvironment. Here we demonstrate that induction of EMT in human carcinoma cells via overexpression of the transcription factor Brachyury is associated with enhanced secretion of multiple cytokines, chemokines, and angiogenic factors and, in particular, with the induction of the IL-8/IL-8R axis. Our results also indicate the essential role of IL-8 signaling for the acquisition and/or maintenance of the mesenchymal and invasive features of Brachyury-overexpressing tumor cells, and demonstrate that IL-8 secreted by tumor cells undergoing EMT could potentiate tumor progression by inducing adjacent epithelial tumor cells into EMT. Altogether, our results emphasize the potential role of EMT in the modulation of the tumor microenvironment via secretion of multiple soluble mediators and suggest that IL-8 signaling blockade may provide a means of targeting mesenchymal-like, invasive tumor cells.

Medical Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer

Biology

Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a var...

The role of stromal cancer-associated fibroblasts in pancreatic cancer

Journal of Hematology & Oncology, 2017

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer generally refractory to conventional treatments. Cancer-associated fibroblasts (CAFs) are cellular components of the desmoplastic stroma characteristic to the tumor that contributes to this treatment resistance. Various markers for CAFs have been explored including palladin and CD146 that have prognostic and functional roles in the pathobiology of PDAC. Mechanisms of CAF-tumor cell interaction have been described including exosomal transfer and paracrine signaling mediated by cytokines such as GM-CSF and IL-6. The role of downstream signaling pathways including JAK/STAT, mTOR, sonic hedge hog (SHH), and NFkB have also been shown to play an important function in PDAC-CAF cross talk. The role of autophagy and other metabolic effects on each cell type within the tumor have also been proposed to play roles in facilitating CAF secretory function and enhancing tumor growth in a low-glucose microenvironment. Targeting the stroma has gained interest with multiple preclinical and clinical trials targeting SHH, JAK2, and methods of either exploiting the secretory capability of CAFs to enhance drug delivery or inhibiting it to prevent its influence on cancer cell chemoresistance. This review summarizes the most recent progress made in understanding stromal formation; its contribution to tumor proliferation, invasion, and metastasis; its role in chemoresistance; and potential therapeutic strategies on the horizon.

Metastatic Transition of Pancreatic Ductal Cell Adenocarcinoma Is Accompanied by the Emergence of Pro-Invasive Cancer-Associated Fibroblasts

Cancers

Cancer-associated fibroblasts (CAFs) are now appreciated as key regulators of cancer metastasis, particularly in cancers with high stromal content, e.g., pancreatic ductal cell carcinoma (PDAC). However, it is not yet well understood if fibroblasts are always primed to be cooperative in PDAC transition to metastasis, if they undergo transformation which ensures their cooperativity, and if such transformations are cancer-driven or intrinsic to fibroblasts. We performed a fibroblast-centric analysis of PDAC cancer, as it transitioned from the primary site to trespass stromal compartment reaching the lymph node using published single-cell RNA sequencing data by Peng et al. We have characterized the change in fibroblast response to cancer from a normal wound healing response in the initial stages to the emergence of subclasses with myofibroblast and inflammatory fibroblasts such as signatures. We have previously posited “Evolved Levels of Invasibility (ELI)”, a framework describing the ...

Cancer-associated stromal fibroblasts promote pancreatic tumor progression

Cancer research, 2008

Pancreatic ductal adenocarcinoma is characterized by a highly malignant phenotype resistant to currently available systemic therapies; incidence rates are nearly equal to mortality rates ( 1). The extremely dense desmoplastic infiltration that is characteristic of pancreatic ...

Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8

Theranostics, 2019

Background: The dense fibrotic stroma enveloping pancreatic tumors is a major cause of drug resistance. Pancreatic stellate cells (PSCs) in the stroma can be activated to induce intra-tumor fibrosis and worsen patient survival; however, the molecular basics for the regulation of PSC activation remains unclear. Methods: The in vitro coculture system was used to study cancer cell-PSC interactions. Atomic force microscopy was used to measure the stiffness of tumor tissues and coculture gels. Cytokine arrays, qPCR, and Western blotting were performed to identify the potential factors involved in PSC activation and to elucidate underlying pathways. Results: PSC activation characterized by α-SMA expression was associated with increased pancreatic tumor stiffness and poor prognosis. Coculture with cancer cells induced PSC activation, which increased organotypic coculture gel stiffness and cancer cell invasion. Cancer cells-derived PAI-1 identified from coculture medium could activate PSCs, consistent with pancreatic cancer tissue microarray analysis showing a strong positive correlation between PAI-1 and α-SMA expression. Suppression by knocking down PAI-1 in cancer cells demonstrated the requirement of PAI-1 for coculture-induced PSC activation and gel stiffness. PAI-1 could be upregulated by KRAS in pancreatic cancer cells through ERK. In PSCs, inhibition of LRP-1, ERK, and c-JUN neutralized the effect of PAI-1, suggesting the contribution of LRP-1/ERK/c-JUN signaling. Furthermore, activated PSCs might exacerbate malignant behavior of cancer cells via IL-8 because suppression of IL-8 signaling reduced pancreatic tumor growth and fibrosis in vivo. Conclusions: KRAS-mutant pancreatic cancer cells can activate PSCs through PAI-1/LRP-1 signaling to promote fibrosis and cancer progression.

Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight

International Journal of Molecular Sciences, 2021

Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tu...

Human pancreatic cancer cells induce a MyD88-dependent stromal response to promote a tumor-tolerant immune microenvironment

Cancer research, 2016

Cancer cells exert mastery over the local tumor-associated stroma (TAS) to configure protective immunity within the tumor microenvironment. The immunomodulatory character of pancreatic lysates of patients with cancer differs from those with pancreatitis. In this study, we evaluated the crosstalk between pancreatic cancer (PC) and its TAS in primary human cell culture models. Upon exposure of TAS to PC cell-conditioned media, we documented robust secretion of IL-6 and IL-8. This TAS response was MyD88-dependent and sufficient to directly suppress both CD4+ and CD8+ T cell proliferation, inducing Th17 polarization at the expense of Th1. We found that patients possessed a similar shift in circulating effector memory Th17:Th1 ratios compared to healthy controls. The TAS response also directly suppressed CD8+ T cell-mediated cytotoxicity. Overall, our results demonstrate how TAS contributes to the production of an immunosuppressive tumor microenvironment in pancreatic cancer.