Impact of Genomics on Chickpea Breeding (original) (raw)
Compendium of Plant Genomes
Chickpea is an economical source of vegetable protein for the poor living in the semi-arid regions globally. As a consequence of climate change and increasing climate variability, the incidences of drought and heat stresses and severity of some diseases, such as dry root rot and collar rot, have increased in chickpea crop, resulting in poor and unstable yields. By improoving the efficiency of crop breeding programs, climate resilient varieties with traits desired by the farmers, industries and consumers can be developed more rapidly. Excellent progress has been made in the development of genomic resources for chickpea in the recent past. Several national and international chickpea breeding programs have started utilizing these genomic resources and tools for genetic improvement of complex traits. One of such examples includes the introgression of "QTL-hotspot" containing quantitative trait loci (QTLs) for several drought tolerance-related traits, including root traits, through marker-assisted backcrossing (MABC) for enhancing drought tolerance in popular cultivars. Several drought-tolerant introgression lines with higher yield as compared to the popular cultivars have been identified. Multi-parent advanced generation intercross (MAGIC) populations developed from using 8 parents created large genetic diversity consequently several promising lines. Marker-assisted recurrent selection (MARS) has also been explored for yield improvement in chickpea. Development of diagnostic markers or the identification of candidate genes for several traits is essential for greater use of genomic resources in chickpea improvement.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact