Multioccupant Activity Recognition in Pervasive Smart Home Environments (original) (raw)

On multi-resident activity recognition in ambient smart-homes

Artificial Intelligence Review, 2019

Increasing attention to the research on activity monitoring in smart homes has motivated the employment of ambient intelligence to reduce the deployment cost and solve the privacy issue. Several approaches have been proposed for multi-resident activity recognition, however, there still lacks a comprehensive benchmark for future research and practical selection of models. In this paper we study different methods for multi-resident activity recognition and evaluate them on same sets of data. The experimental results show that recurrent neural network with gated recurrent units is better than other models and also considerably efficient, and that using combined activities as single labels is more effective than represent them as separate labels.

Key feature identification for recognition of activities performed by a smart-home resident

Journal of Ambient Intelligence and Humanized Computing

Activity recognition is beneficial for continuous health monitoring of smart-home residents, such as patients and elderly people , living in the privacy of their home. We propose an activity recognition approach apposite for a smart home environment. The observations are obtained through multiple sensors deployed at different locations within a smart home. The activities are represented by the features selected from the received observations. The inconsistent order of performing the activities, infrequent occurrences and the presence of overlapping activities make it challenging to select the features with high class representative ability and inter-class discriminative qualities. We select the key features locally within each activity class, which is least affected by the order of performance and the occurrence of other activities. Next, for association of activities, we solve the existing multi-class problem through a specifically designed binary classification with ranking solution, which learns on the correct and incorrect assignments of activities. A comparison of proposed approach with existing methods in terms of recognition accuracy is presented on publicly available 'Kasteren' and 'CASAS' datasets, representing a range of overlapping and well separated activities of daily life. Our approach tailored towards a smart home environment demonstrates a better accuracy than existing methods.

Context-Aware Data Association for Multi-Inhabitant Sensor-Based Activity Recognition

2020 21st IEEE International Conference on Mobile Data Management (MDM)

Recognizing the activities of daily living (ADLs) in multi-inhabitant settings is a challenging task. One of the major challenges is the so-called data association problem: how to assign to each user the environmental sensor events that he/she actually triggered? In this paper, we tackle this problem with a contextaware approach. Each user in the home wears a smartwatch, which is used to gather several high-level context information, like the location in the home (thanks to a micro-localization infrastructure) and the posture (e.g., sitting or standing). Context data is used to associate sensor events to the users which more likely triggered them. We show the impact of context reasoning in our framework on a dataset where up to 4 subjects perform ADLs at the same time (collaboratively or individually). We also report our experience and the lessons learned in deploying a running prototype of our method.

Recognizing independent and joint activities among multiple residents in smart environments

Journal of Ambient Intelligence and Humanized Computing, 2010

The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. A primary challenge that needs to be tackled to meet this need is the ability to recognize and track functional activities that people perform in their own homes and everyday settings. In this paper, we look at approaches to perform real-time recognition of Activities of Daily Living. We enhance other related research efforts to develop approaches that are effective when activities are interrupted and interleaved. To evaluate the accuracy of our recognition algorithms we assess them using real data collected from participants performing activities in our on-campus smart apartment testbed.

Improving Recognition of Overlapping Activities with Less Interclass Variations in Smart Homes through Clustering-Based Classification

Computational Intelligence and Neuroscience

The systems of sensing technology along with machine learning techniques provide a robust solution in a smart home due to which health monitoring, elderly care, and independent living take advantage. This study addresses the overlapping problem in activities performed by the smart home resident and improves the recognition performance of overlapping activities. The overlapping problem occurs due to less interclass variations (i.e., similar sensors used in more than one activity and the same location of performed activities). The proposed approach overlapping activity recognition using cluster-based classification (OAR-CbC) that makes a generic model for this problem is to use a soft partitioning technique to separate the homogeneous activities from nonhomogeneous activities on a coarse-grained level. Then, the activities within each cluster are balanced and the classifier is trained to correctly recognize the activities within each cluster independently on a fine-grained level. We e...

Recognizing multi-user activities using wearable sensors in a smart home

Pervasive and Mobile Computing, 2011

The advances of wearable sensors and wireless networks offer many opportunities to recognize human activities from sensor readings in pervasive computing. Existing work so far focuses mainly on recognizing activities of a single user in a home environment. However, there are typically multiple inhabitants in a real home and they often perform activities together. In this paper, we investigate the problem of recognizing multiuser activities using wearable sensors in a home setting. We develop a multi-modal, wearable sensor platform to collect sensor data for multiple users, and study two temporal probabilistic models-Coupled Hidden Markov Model (CHMM) and Factorial Conditional Random Field (FCRF)-to model interacting processes in a sensor-based, multiuser scenario. We conduct a real-world trace collection done by two subjects over two weeks, and evaluate these two models through our experimental studies. Our experimental results show that we achieve an accuracy of 96.41% with CHMM and an accuracy of 87.93% with FCRF, respectively, for recognizing multi-user activities.

Applications and Challenges of Human Activity Recognition Using Sensors In A Smart Environment

We are currently using smart phone sensors to detect physical activities. The sensors which are currently being used are accelerometer, gyroscope, barometer, etc. Recently, smart phones, equipped with a rich set of sensors, are explored as alternative platforms for human activity recognition. Automatic recognition of physical activities – commonly referred to as human activity recognition (HAR) – has emerged as a key research area in human-computer interaction (HCI) and mobile and ubiquitous computing. One goal of activity recognition is to provide information on a user’s behavior that allows computing systems to proactively assist users with their tasks. Human activity recognition requires running classification algorithms, originating from statistical machine learning techniques. Mostly, supervised or semi-supervised learning techniques are utilized and such techniques rely on labeled data, i.e., associated with a specific class or activity. In most of the cases, the user is required to label the activities and this, in turn, increases the burden on the user. Hence, user- independent training and activity recognition are required to foster the use of human activity recognition systems where the system can use the training data from other users in classifying the activities of a new subject.

Data-Driven Human Activity Recognition in Smart Environments

Proceedings of the International Scientific Conference - Sinteza 2016, 2016

Many applications of human activity recognition like healthcare, security etc. show how human activity recognition is important in everyday life. In this paper, we compare different machine learning algorithms like Naïve Bayes (NB), One R (1R) rule, Zero R (0R) rule, J 48 trees, Random Forest (RF) and Random Tree (RT) applied on sensor-based human activity recognition in a home environment. We show that Random Forest achieves better performance in terms of correctly classified instances comparing to other algorithms, while application of 0R rules algorithm achieves significantly the worst performance. Additionally, in order to reduce the dimensionality of the algorithm, we applied wrapper method using the same classifier in the attribute selection. It is shown that using the wrapper method the performance of the classification in terms of correctly classified instances is not significantly changed, while it shows much better performance in terms of algorithm complexity. After calculating accuracy of each algorithm, we calculate accuracy for each activity classified by each classifier.

ARAS Human Activity Datasets in Multiple Homes with Multiple Residents

Proceedings of the ICTs for improving Patients Rehabilitation Research Techniques, 2013

The real world human activity datasets are of great importance in development of novel machine learning methods for automatic recognition of human activities in smart environments. In this study, we present the details of ARAS (Activity Recognition with Ambient Sensing) human activity recognition datasets that are collected from two real houses with multiple residents during two months. The datasets contain the ground truth labels for 27 different activities. Each house was equipped with 20 binary sensors of different types that communicate wirelessly using the ZigBee protocol. A full month of information which contains the sensor data and the activity labels for both residents was gathered from each house, resulting in a total of two months data. In the paper, particularly, we explain the details of sensor selection, targeted activities, deployment of the sensors and the characteristics of the collected data.

Open-Source Data Collection and Data Sets for Activity Recognition in Smart Homes

Sensors

As research in smart homes and activity recognition is increasing, it is of ever increasing importance to have benchmarks systems and data upon which researchers can compare methods. While synthetic data can be useful for certain method developments, real data sets that are open and shared are equally as important. This paper presents the E-care@home system, its installation in a real home setting, and a series of data sets that were collected using the E-care@home system. Our first contribution, the E-care@home system, is a collection of software modules for data collection, labeling, and various reasoning tasks such as activity recognition, person counting, and configuration planning. It supports a heterogeneous set of sensors that can be extended easily and connects collected sensor data to higher-level Artificial Intelligence (AI) reasoning modules. Our second contribution is a series of open data sets which can be used to recognize activities of daily living. In addition to the...