Estimating the Thermodynamic and Dynamic Contributions to Hydroclimatic Change over Peninsular Florida (original) (raw)
2021, Journal of Hydrometeorology
In this study we examine the thermodynamically and dynamically forced hydroclimatic changes in the four representative seasons over Peninsular Florida (PF) from an unprecedented pair of high-resolution regional coupled ocean–atmosphere model simulations conducted at 10-km grid spacing for both the atmospheric and the oceanic components forced by one of the global climate models that participated in CMIP5. The model simulation verifies reasonably well with the observations and captures the distinct seasonal cycle of the region. The projected change in the freshwater flux in the mid-twenty-first century (2041–60) relative to the late twentieth century (1986–2005) shows a precipitation deficit in the summer over PF, which is statistically significant. This projected change in freshwater flux over PF is enabled by the strengthening of the anticyclonic North Atlantic subtropical high circulation with corresponding changes in divergence of moisture, advection of moisture from changes in t...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.